Linear Algebra, EE 10810/EECS 205004

Note 1.1-1.2

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- RK's goals:

1. You should go through the whole Textbook.
2. Instead of repeating what you can find in the Textbook, I will illustrate the content from Scratch, by raising questions to you first.
3. You need to have Quiz (40% to the semester score) on every Wednesday.

- Textbook: S. H. Friedberg, A. J. Insel, and L. E. Spence, "Linear Algebra," 4th Edition (Pearson, 2014).
- Online Materials: All the Assignments, with the Scratch notes, will be uploaded to iLMS.
- Evaluation:

1. Assignments (Weekly)
2. In-class Quiz (≥ 12): 40\%; (Weekly, on every Wednesday morning, 10:10-10:40 AM)

- Office hours:

1. RK: Every Wednesday, 1:00-5:00 PM at R 911, Delta Hall, or by appointment
2. Raul Robles-Robles (last year PhD student); email: raulamauryrobles@hotmail.com
3. TA time, Every Monday, 6:30-8:30 PM at Delta 217.

- Integrity: First Quiz on September 23rd, Wednesday, 10:10 AM - 10:30 AM.
- Assignment 1:

1. Uniqueness:
(a) Prove that the vector $\overrightarrow{0}$ in a vector space is unique.
(b) Prove that for each element \vec{x} in a vector space V, there exists a unique vector \vec{y}, such that $\vec{x}+\vec{y}=\overrightarrow{0}$.
2. Zero Vector Space: Let $V=\{\vec{\theta}\}$ consist of a single vector $\vec{\theta}$, and define $\vec{\theta}+\vec{\theta}=\vec{\theta}$ and $c \vec{\theta}=\vec{\theta}$ for each c in F. Prove that V is a vector space over F.
3. Complex numbers field: Let $V=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in \mathcal{R}\right.$ for $\left.i=1,2, \ldots, n\right\}$. Is V a vector space over the field of complex numbers with the operations of coordinatewise addition and multiplication?
4. Consider a vector space over binary number field:

- Binary number field \mathcal{F} is a set with only two numbers: 0 and 1.
- The addition $(+)$ and multiplication (\bullet) for binary number field follow the table below:

$$
\begin{array}{l|l|l}
+ & 0 & 1 \tag{1}\\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0
\end{array} \quad \begin{array}{c|c|c}
\bullet & 0 & 1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 0 & 1
\end{array}
$$

- Let F^{n} be the set of all binary n-tuples, i.e.,

$$
\begin{equation*}
F^{n}=\left\{\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mid v_{i}=0 \text { or } 1,1 \leq i \leq n\right\} \tag{2}
\end{equation*}
$$

Show that F^{n} is a vector space over binary number field, by checking the 8 required conditions (VS1 - VS8) to define a vector space.

From Scratch !!

- Vector:

- Parallelogram Law for Vector Addition:
- Objects: n-tuples, matrix, polynomial function, sequence
- Rules: Linear Combination (Superposition)
- Commutativity:
- Associativity:
- Distributivity:
- Zero Vector:
- Inverse:
- Identity:
- Definition: A vector space (or linear space) V over a field F consists of a set on which two operations are defined, such that:

1. addition: for each pair of elements \vec{x}, \vec{y} in V there is a unique element $\vec{x}+\vec{y}$ in V
2. scalar multiplication: for each element a in F and each element \vec{x} in V there is a unique element $a \vec{x}$ in V, such that the conditions VS1 - VS8 are all hold.
