Linear Algebra, EE 10810/EECS 205004

Note 1.3 – 1.4

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Office hours:

- 1. RK: Every Wednesday, 1:00-5:00 PM at R 911, Delta Hall, or by appointment
- 2. Raul Robles-Robles (last year PhD student); email: raulamauryrobles@hotmail.com, or by appointment.
- 3. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217.
- Integrity: Next Quiz on September 30th, Wednesday, 10:10 AM 10:30 AM.
- Assignment: for the Quiz on Sep. 30th

1. Let $\mathcal{V} = \{(a_1, a_2) : a_1, a_2 \in \mathcal{R}\}$. For $(a_1, a_2), (b_1, b_2) \in \mathcal{V}$ and $c \in \mathcal{R}$, define

 $(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2), \text{ and } c(a_1, a_2) = (ca_1, ca_2).$

Is \mathcal{V} a vector space over \mathcal{R} with operations?

- 2. Let W_1 and W_2 be subspaces of a vector space \mathcal{V} . Prove that $W_1 \cup W_2$ is a subspace of \mathcal{V} if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 3. Prove that if \mathcal{W} is a subspace of a vector space \mathcal{V} and w_1, w_2, \ldots, w_n are in \mathcal{W} , then $a_1w_1 + a_2w_2 + \ldots + a_nw_n \in \mathcal{W}$ for any scalars a_1, a_2, \ldots, a_n .
- 4. In $M_{m \times n}{F}$ define $\mathcal{W}_1 = {A \in M_{m \times n}{F} : A_{ij} = 0 \text{ whenever } i > j}$ and $\mathcal{W}_2 = {A \in M_{m \times n}{F} : A_{ij} = 0 \text{ whenever } i \le j}$. Show that $M_{m \times n}{F} = \mathcal{W}_1 \oplus \mathcal{W}_2$, where \oplus denotes the direct sum of \mathcal{W}_1 and \mathcal{W}_2 .
- 5. Let \mathcal{W} be a subspace of a vector space \mathcal{V} over a field \mathcal{F} . For any $\nu \in \mathcal{V}$, the set $\nu + \mathcal{W} = \{\nu + w : w \in \mathcal{W}\}$ is called the *coset* of \mathcal{W} containing ν .
 - (a) Prove that $\nu + \mathcal{W}$ is a subspace of \mathcal{V} if and only if $\nu \in \mathcal{W}$.
 - (b) Prove that $\nu_1 + \mathcal{W} = \nu_2 + \mathcal{W}$ iff $\nu_1 \nu_2 \in \mathcal{W}$.

From Scratch !!

- Definition: A vector space (or linear space) V over a field F consists of a set on which two operations are defined, such that:
 - 1. addition: for each pair of elements \vec{x}, \vec{y} in V there is a unique element $\vec{x} + \vec{y}$ in V

2. scalar multiplication: for each element a in F and each element \vec{x} in V there is a unique element $a \vec{x}$ in V,

such that the conditions $\mathrm{VS1}$ - $\mathrm{VS8}$ are all hold.

- Theorem 1.1 (Cancellation Law for Vector Addition): $\vec{x} + \vec{z} = \vec{y} + \vec{z} \quad \Leftrightarrow \quad \vec{x} = \vec{y}$.
 - Corollary 1: $\vec{0}$ is unique.
 - Corollary 2: The inverse vector $\vec{x} + \vec{y} = \vec{0}$ is unique.
- \bullet Theorem 1.2:
 - 1. $0 \vec{x} = 0$ for each $x \in \mathcal{V}$.
 - 2. $(-a)\vec{x} = -(a\vec{x}) = a(-\vec{x})$ for each $a \in \mathcal{F}$ and each \vec{x} in \mathcal{V} .
 - 3. $a\vec{0} = 0$ for each $a \in \mathcal{F}$.
- Subspace:
- Theorem 1.3:
 - 1. 2.
 - 3.
- Matrix in Subspace: Symmetric Matrix, Diagonal Matrix, Upper (Down)-Triangle Matrix, Trace
- Polynomials in Subspace:
- Theorem 1.4: Any intersection of subspaces of a vector space \mathcal{V} is a subspace of \mathcal{V} .
- Question: Is the Union of subspaces of a vector space \mathcal{V} also a subspace of \mathcal{V} ?
- Systems of Linear Equations:

$$\begin{pmatrix} +2x^{3} \\ -2x^{2} \\ +12x \\ -6 \end{pmatrix} = a \begin{pmatrix} +x^{3} \\ -2x^{2} \\ -5x \\ -3 \end{pmatrix} + b \begin{pmatrix} +3x^{3} \\ -5x^{2} \\ -4x \\ -9 \end{pmatrix}$$
(2)

$$\begin{pmatrix} +3x^{3} \\ -2x^{2} \\ +7x \\ +8 \end{pmatrix} = a \begin{pmatrix} +x^{3} \\ -2x^{2} \\ -5x \\ -3 \end{pmatrix} + b \begin{pmatrix} +3x^{3} \\ -5x^{2} \\ -4x \\ -9 \end{pmatrix}$$
(3)

- Rules for systems of linear equations:
- pivot