Linear Algebra, EE 10810/EECS 205004

Note 1.3-1.4

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Office hours:

1. RK: Every Wednesday, 1:00-5:00 PM at R 911, Delta Hall, or by appointment
2. Raul Robles-Robles (last year PhD student); email: raulamauryrobles@hotmail.com, or by appointment.
3. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217.

- Integrity: Next Quiz on September 30th, Wednesday, 10:10 AM - 10:30 AM.
- Assignment: for the Quiz on Sep. 30th

1. Let $\mathcal{V}=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathcal{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in \mathcal{V}$ and $c \in \mathcal{R}$, define

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+2 b_{1}, a_{2}+3 b_{2}\right), \quad \text { and } \quad c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right) .
$$

Is \mathcal{V} a vector space over \mathcal{R} with operations?
2. Let \mathcal{W}_{1} and \mathcal{W}_{2} be subspaces of a vector space \mathcal{V}. Prove that $\mathcal{W}_{1} \cup \mathcal{W}_{2}$ is a subspace of \mathcal{V} if and only if $\mathcal{W}_{1} \subseteq \mathcal{W}_{2}$ or $\mathcal{W}_{2} \subseteq \mathcal{W}_{1}$.
3. Prove that if \mathcal{W} is a subspace of a vector space \mathcal{V} and $w_{1}, w_{2}, \ldots, w_{n}$ are in \mathcal{W}, then $a_{1} w_{1}+a_{2} w_{2}+\ldots a_{n} w_{n} \in \mathcal{W}$ for any scalars $a_{1}, a_{2}, \ldots, a_{n}$.
4. In $M_{m \times n}\{F\}$ define $\mathcal{W}_{1}=\left\{A \in M_{m \times n}\{F\}: A_{i j}=0\right.$ whenever $\left.i>j\right\}$ and $\mathcal{W}_{2}=\left\{A \in M_{m \times n}\{F\}: A_{i j}=0\right.$ whenever $i \leq j\}$. Show that $M_{m \times n}\{F\}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}$, where \oplus denotes the direct sum of \mathcal{W}_{1} and \mathcal{W}_{2}.
5. Let \mathcal{W} be a subspace of a vector space \mathcal{V} over a field \mathcal{F}. For any $\nu \in \mathcal{V}$, the set $\nu+\mathcal{W}=\{\nu+w: w \in \mathcal{W}\}$ is called the coset of \mathcal{W} containing ν.
(a) Prove that $\nu+\mathcal{W}$ is a subspace of \mathcal{V} if and only if $\nu \in \mathcal{W}$.
(b) Prove that $\nu_{1}+\mathcal{W}=\nu_{2}+\mathcal{W}$ iff $\nu_{1}-\nu_{2} \in \mathcal{W}$.

From Scratch !!

- Definition: A vector space (or linear space) V over a field F consists of a set on which two operations are defined, such that:

1. addition: for each pair of elements \vec{x}, \vec{y} in V there is a unique element $\vec{x}+\vec{y}$ in V
2. scalar multiplication: for each element a in F and each element \vec{x} in V there is a unique element $a \vec{x}$ in V, such that the conditions VS1 - VS8 are all hold.

- Theorem 1.1 (Cancellation Law for Vector Addition): $\vec{x}+\vec{z}=\vec{y}+\vec{z} \quad \Leftrightarrow \quad \vec{x}=\vec{y}$.
- Corollary 1: $\overrightarrow{0}$ is unique.
- Corollary 2: The inverse vector $\vec{x}+\vec{y}=\overrightarrow{0}$ is unique.
- Theorem 1.2:

1. $0 \vec{x}=0$ for each $x \in \mathcal{V}$.
2. $(-a) \vec{x}=-(a \vec{x})=a(-\vec{x})$ for each $a \in \mathcal{F}$ and each \vec{x} in \mathcal{V}.
3. $a \overrightarrow{0}=0$ for each $a \in \mathcal{F}$.

- Subspace:
- Theorem 1.3:

1.
2.
3.

- Matrix in Subspace: Symmetric Matrix, Diagonal Matrix, Upper (Down)-Triangle Matrix, Trace
- Polynomials in Subspace:
- Theorem 1.4: Any intersection of subspaces of a vector space \mathcal{V} is a subspace of \mathcal{V}.
- Question: Is the Union of subspaces of a vector space \mathcal{V} also a subspace of \mathcal{V} ?
- Systems of Linear Equations:

$$
\begin{gather*}
\begin{array}{rll}
a_{1} & -2 a_{2} & +2 a_{4} \\
2 a_{1} & -4 a_{2} & -3 a_{5}=2 \\
a_{1} & -2 a_{2} & +3 a_{3} \\
+8 a_{5} & =6 \\
+3 a_{4} & +16 a_{5}=8
\end{array} \tag{1}\\
\left(\begin{array}{l}
+2 x^{3} \\
-2 x^{2} \\
+12 x \\
-6
\end{array}\right)=a\left(\begin{array}{l}
+x^{3} \\
-2 x^{2} \\
-5 x \\
-3
\end{array}\right)+b\left(\begin{array}{l}
+3 x^{3} \\
-5 x^{2} \\
-4 x \\
-9
\end{array}\right) \tag{2}\\
\left(\begin{array}{l}
+3 x^{3} \\
-2 x^{2} \\
+7 x \\
+8
\end{array}\right)=a\left(\begin{array}{l}
+x^{3} \\
-2 x^{2} \\
-5 x \\
-3
\end{array}\right)+b\left(\begin{array}{l}
+3 x^{3} \\
-5 x^{2} \\
-4 x \\
-9
\end{array}\right) \tag{3}
\end{gather*}
$$

- Rules for systems of linear equations:
- pivot

