Linear Algebra, EE 10810/EECS 205004

Note 1.4-1.5

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Office Hours:

1. RK: Every Wednesday, 1:00-5:00 PM at R 911, Delta Hall, or by appointment.
2. Raul Robles-Robles (last year PhD student); email: raulamauryrobles@hotmail.com.
3. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217 , or by appointment.

- Integrity: Next Quiz on September 30th, Wednesday, 10:10 AM - 10:30 AM.
- Assignment: for the Quiz on Sep. 30th

1. Solve the system of linear equations by Gaussian elimination method,

$$
\left\{\begin{array}{rlll}
2 x_{1}-2 x_{2}-3 x_{3} & = & -2 \tag{1}\\
3 x_{1} & -3 x_{2} & -2 x_{3}+5 x_{4} & =7 \\
x_{1} & -x_{2} & -2 x_{3}-x_{4} & =-3
\end{array}\right.
$$

2. Show that if

$$
M_{1}=\left(\begin{array}{cc}
1 & 0 \tag{2}\\
0 & 0
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right), \quad \text { and } \quad M_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then the span of $\left\{M_{1}, M_{2}, M_{3}\right\}$ is the set of all symmetric 2×2 matrices.
3. Show that a subset W of a vector space \mathcal{V} is a subspace of \mathcal{V} if and only if $\operatorname{span}(W)=\mathcal{W}$.
4. Show that if S_{1} and S_{2} are subsets of a vector space \mathcal{V} such that $S_{1} \subseteq S_{2}$, then $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.

From Scratch !!

- Show that if S_{1} and S_{2} are arbitrary subsets of a vector space \mathcal{V}, then $\operatorname{span}\left(S_{1} \cup S_{2}\right)=\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)$.
- Definition: A subset \mathcal{W} of a vector space \mathcal{V} over a field \mathcal{F} is called subspace of \mathcal{V} if \mathcal{W} is a vector space over \mathcal{F} under the operation of addition and scalar multiplication defined on \mathcal{V}.
- Theorem 1.3: Subspace \mathcal{W} :

1. $\overrightarrow{0} \in \mathcal{W}$.
2. $\vec{x}+\vec{y} \in \mathcal{W}$ whenever $\vec{x} \in \mathcal{W}$ and $\vec{y} \in \mathcal{W}$.
3. $a \vec{x} \in \mathcal{W}$ whenever $a \in \mathcal{F}$ and $\vec{x} \in \mathcal{W}$.

- Theorem 1.4: Any intersection of subspaces of a vector space \mathcal{V} is a subspace of \mathcal{V}.
- Question: Is the Union of subspaces of a vector space \mathcal{V} also a subspace of \mathcal{V} ?

- Systems of Linear Equations:

$$
\begin{align*}
& a_{1}-2 a_{2}+2 a_{4}-3 a_{5}=2 \\
& 2 a_{1}-4 a_{2}+2 a_{3}+8 a_{5}=6 \tag{3}\\
& a_{1}-2 a_{2}+3 a_{3}-3 a_{4}+16 a_{5}=8
\end{align*}
$$

- Alternative: Geometric interpretation of Systems of Linear Equations: 2D lines intersecting at a point, 3D (intersecting at a plane)

$$
\begin{gather*}
x-2 y=1 \tag{4}\\
3 x+2 y=11
\end{gather*}
$$

- Rules for systems of linear equations: $\overline{\bar{P}} \overline{\bar{D}} \overline{\bar{E}}$

1. Scalar Multiplication, Diagonalized Matrix, ex, $\overline{\bar{D}}=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
2. Elimination, Elimination Matrix, ex, $\overline{\bar{E}}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -l & 0 & 1\end{array}\right]$
3. Row Exchange, Permutation Matrix, ex, $\overline{\bar{P}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

- Gauss Elimination
- Pivot
- Augmented Matrix, $\overline{\bar{M}} \vec{a}=\vec{b} \quad \Rightarrow \quad[\overline{\bar{M}} \mid \vec{b}]$.
- Breakdown of Elimination
- Inverse Matrix, $\overline{\bar{M}}^{-1}$
- Span: $\operatorname{span}(S)$
- Linearly Dependent and Linearly Independent
- Basis

