## Linear Algebra, EE 10810/EECS 205004

Note 1.5-1.6

Ray-Kuang Lee ${ }^{1}$<br>${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw<br>(Dated: Fall, 2020)

## - Office Hours:

1. Raul Robles-Robles (last year PhD student); email: raulamauryrobles@hotmail.com.
2. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217, or by appointment.

- Integrity: Next Quiz on October 7th, Wednesday, 10:10 AM - 10:30 AM.
- Assignment: for the Quiz on Oct. 7th

1. Determine whether the following sets are linearly dependent or linearly independent
(a)

$$
\left\{\left(\begin{array}{cc}
1 & -3  \tag{1}\\
-2 & 4
\end{array}\right), \quad\left(\begin{array}{cc}
-2 & 6 \\
4 & -8
\end{array}\right)\right\} \quad \text { in } \quad \overline{\bar{M}}_{2 \times 2}(\mathcal{R})
$$

(b)

$$
\left\{\left(\begin{array}{cc}
1 & -2  \tag{2}\\
-1 & 4
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 1 \\
2 & -4
\end{array}\right)\right\} \quad \text { in } \quad \overline{\bar{M}}_{2 \times 2}(\mathcal{R})
$$

(c) $\left\{x^{3}+2 x^{2},-x^{2}+3 x+1, x^{3}-x^{2}+2 x-1\right\}$ in $P_{3}(\mathcal{R})$
2. Prove that, let $\mathcal{V}$ be a vector space, and let $\mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \mathcal{V}$. If $\mathcal{S}_{1}$ is linear dependent, then $\mathcal{S}_{2}$ is linearly dependent.
3. Prove that, a set $S$ is linearly dependent iff $S=\{\overrightarrow{0}\}$ or there exist distinct vectors $\vec{v}, \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ in $S$ s.t. $\vec{v}$ is a linear combination of $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$.

## From Scratch !!

- Systems of Linear Equations:

$$
\begin{align*}
2 a_{1}+4 a_{2}-2 a_{3} & =2 \\
4 a_{1}+9 a_{2}-3 a_{3} & =8  \tag{3}\\
-2 a_{1}-3 a_{2}+7 a_{3} & =10
\end{align*}
$$

- Alternative: Geometric interpretation of Systems of Linear Equations: 2D and 3D (intersections of plans)
- Matrix form: $\overline{\bar{M}} \vec{a}=\vec{b}$

$$
\left(\begin{array}{rrr}
2 & 4 & -2  \tag{4}\\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{r}
2 \\
8 \\
10
\end{array}\right)
$$

- Augmented Matrix, $\overline{\bar{M}} \vec{a}=\vec{b} \quad \Rightarrow \quad[\overline{\bar{M}} \mid \vec{b}]$.

$$
\left(\begin{array}{rrr|r}
2 & 4 & -2 & 2  \tag{5}\\
4 & 9 & -3 & 8 \\
-2 & -3 & 7 & 10
\end{array}\right)
$$

- Rules for systems of linear equations: $\overline{\bar{P}} \overline{\bar{D}} \overline{\bar{E}}$

1. Scalar Multiplication, Diagonalized Matrix, ex, $\overline{\bar{D}}=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
2. Elimination, Elimination Matrix, ex, $\overline{\bar{E}}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -l & 0 & 1\end{array}\right]$
3. Row Exchange, Permutation Matrix, ex, $\overline{\bar{P}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

- Gauss-Jordan Elimination: $\overline{\bar{P}} \overline{\bar{D}} \overline{\bar{E}} \overline{\bar{M}}$

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1  \tag{6}\\
0 & 1 & 1 & 4 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

- Echelon (Trapezoid) Matrix Form:
- Pivot: the First non-zero in the row that does the elimination, $p_{i}$.
- Breakdown of Elimination: pivot is zero, $\exists p_{i}=0$
- Number of Pivots: \# called as the rank of a Matrix
- Inverse Matrix, $\overline{\bar{M}}^{-1}$
- LU Decomposition:
- Matrix Operations:
$\begin{array}{llll}\text { - Commutative: } & \overline{\bar{A}}+\overline{\bar{B}} & ; \overline{\bar{A}} \cdot \overline{\bar{B}} \\ \text { - Associative: } & \overline{\bar{A}}+(\overline{\bar{B}}+\overline{\bar{C}}) & ; \overline{\bar{A}} \cdot(\overline{\bar{B}} \cdot \overline{\bar{C}}) & \\ \text { - distributive: } & c(\overline{\bar{A}}+\overline{\bar{B}}) & ; \overline{\bar{C}}(\overline{\bar{A}}+\overline{\bar{B}}) & ;(\overline{\bar{A}}+\overline{\bar{B}})\end{array}$
- Commutator: $[\overline{\bar{A}}, \overline{\bar{B}}]$
- Span: $\operatorname{span}(S)$
- Generating Set: $\operatorname{span}(S)=\mathcal{V}$
- Linearly Dependent:
- Linearly Independent : $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}=0$ iff $a_{1}=a_{2}=\ldots=a_{n}=0$ (trivial solution).
- Basis: Linearly Independent $\cap$ Generating Set

