Linear Algebra, EE 10810/EECS 205004

Note 1.6-1.7

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw

(Dated: Fall, 2020)

- Office Hours:

1. TA time, Every Monday, 6:00-8:00 PM at Delta 217, or by appointment to Mr. Chia-Wei Chen; email: weachen34@gmail.com
2. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217, or by appointment to Mr. Raul Robles-Robles; email: raulamauryrobles@hotmail.com.

- Integrity: Next Quiz on October 14th, Wednesday, 10:10 AM - 10:30 AM.
- Assignment: for the Quiz on Oct. 14th

1. Prove that
if $\left\{\overline{\bar{A}}_{1}, \overline{\bar{A}}_{2}, \ldots, \overline{\bar{A}}_{k}\right\}$ is a linearly independent subset, of $\overline{\bar{M}}_{n \times n}(F)$,

$$
\text { then }\left\{\left(\overline{\bar{A}}_{1}\right)^{t},\left(\overline{\bar{A}}_{2}\right)^{t}, \ldots,\left(\overline{\bar{A}}_{k}\right)^{t}\right\} \quad \text { is also linearly independent. }
$$

2. Do the polynomials $\left(x^{3}-2 x^{2}+1\right),\left(4 x^{2}-x+3\right)$, and $(3 x-2)$ generate $P_{3}(\mathcal{R})$?
3. Fin bases for the following subspace of F^{5} :

$$
W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right), \in F^{5}: \quad a_{1}-a_{3}-a_{4}=0\right\}
$$

and

$$
W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right), \in F^{5}: \quad a_{2}=a_{3}=a_{4} \quad \text { and } \quad a_{1}+a_{5}=0\right\}
$$

What are the dimensions of W_{1} and W_{2} ?
4. Use the Lagrange interpolation formula to construct the polynomial of smallest degree whose graph contains the following points:

$$
(-2,-6), \quad(-1,5), \quad(1,3)
$$

From Scratch !!

- Theorem 1.5: The span of any subset S of a vector space \mathcal{V} is a subspace of \mathcal{V}.
- Definition: A subset S of a vector space \mathcal{V} generates (or spans) \mathcal{V} if $\operatorname{span}(S)=\mathcal{V}$.
- Definition: A subset S of a vector space \mathcal{V} is called linearly dependent if there exist a finite number of distinct vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{u}_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, s.t.,

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}=0 .
$$

- Definition: A subset S of a vector space \mathcal{V} is not linearly dependent is called linearly independent, i.e., ONLY trivial solutions for

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}=0
$$

- Theorem 1.6: Let \mathcal{V} be a vector space, and let $\mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \mathcal{V}$. If \mathcal{S}_{1} is linear dependent, then \mathcal{S}_{2} is linearly dependent.
- Corollary: Let \mathcal{V} be a vector space, and let $\mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \mathcal{V}$. If \mathcal{S}_{2} is linear independent, then \mathcal{S}_{1} is linearly independent.
- Theorem 1.7: Let S be a linearly independent subset of a vector space \mathcal{V}, and let \vec{v} be a vector in \mathcal{V} that is not in S. Then $S \cup\{\vec{v}\}$ is linearly dependent iff $\vec{v} \in \operatorname{span}(S)$.
- Definition: A basis β for a vector space \mathcal{V} is a linearly independent subset of \mathcal{V} that generates \mathcal{V}.
- Theorem 1.8: Let $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a subset of \mathcal{V}. Then β is a basis for \mathcal{V} iff each $\vec{v} \in \mathcal{V}$ can be uniquely expressed as a linear combination of vector of β, that is,

$$
\vec{v}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+\vec{v}_{n},
$$

for unique scalars $a_{1}, a_{2}, \ldots, a_{n}$.

- Theorem 1.9: Finite basis (finite dimension), $\operatorname{dim}(\mathcal{V})$
- Theorem 1.10: Replacement Theorem
- Theorem 1.11: $\operatorname{dim}(\mathcal{W}) \leq \operatorname{dim}(\mathcal{V})$
- Lagrange Interpolation Formula:
- Example:

$$
f_{i}(x)=\Pi_{k=0, k \neq i}^{n} \frac{x-c_{k}}{c_{i}-c_{k}}
$$

$$
(1,8), \quad(2,5), \quad(3,-4) .
$$

- Definition: Let \mathcal{F} be a family of sets. A member \mathcal{M} of \mathcal{F} is called maximal if \mathcal{M} is contained in no member of \mathcal{F} other than \mathcal{M} itself.
- Definition: Let S be a subset of a vector space \mathcal{V}. A maximal linearly independent subset of S is a subset \mathcal{B} of S satisfying both of the following conditions:

1. \mathcal{B} is linearly independent.
2. The only linearly independent subset of S that contains \mathcal{B} is \mathcal{B} itself.

- Corollary 1.13: Every vector space has a basis.

