Linear Algebra, EE 10810/EECS 205004

Note 1.6 - 1.7

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Office Hours:

- 1. TA time, Every Monday, 6:00-8:00 PM at Delta 217, or by appointment to Mr. Chia-Wei Chen; email: weachen34@gmail.com
- 2. TA time, Every Wednesday, 6:30-8:30 PM at Delta 217, or by appointment to Mr. Raul Robles-Robles; email: raulamauryrobles@hotmail.com.
- Integrity: Next Quiz on October 14th, Wednesday, 10:10 AM 10:30 AM.
- Assignment: for the Quiz on Oct. 14th
 - 1. Prove that

if
$$\{\overline{A}_1, \overline{A}_2, \dots, \overline{A}_k\}$$
 is a linearly independent subset,

of $\overline{\overline{M}}_{n \times n}(F)$,

then $\{(\overline{\overline{A}}_1)^t, (\overline{\overline{A}}_2)^t, \dots, (\overline{\overline{A}}_k)^t\}$ is also linearly independent.

- 2. Do the polynomials $(x^3 2x^2 + 1)$, $(4x^2 x + 3)$, and (3x 2) generate $P_3(\mathcal{R})$?
- 3. Fin bases for the following subspace of F^5 :

$$W_1 = \{(a_1, a_2, a_3, a_4, a_5), \in F^5 : a_1 - a_3 - a_4 = 0\}$$

and

$$W_2 = \{(a_1, a_2, a_3, a_4, a_5), \in F^5 : a_2 = a_3 = a_4 \text{ and } a_1 + a_5 = 0\}$$

What are the dimensions of W_1 and W_2 ?

4. Use the Lagrange interpolation formula to construct the polynomial of smallest degree whose graph contains the following points:

$$(-2, -6), (-1, 5), (1, 3)$$

From Scratch !!

- Theorem 1.5: The span of any subset S of a vector space \mathcal{V} is a subspace of \mathcal{V} .
- Definition: A subset S of a vector space \mathcal{V} generates (or spans) \mathcal{V} if $\operatorname{span}(S) = \mathcal{V}$.
- Definition: A subset S of a vector space \mathcal{V} is called *linearly dependent* if there exist a finite number of distinct vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{u_n}$ in S and scalars a_1, a_2, \ldots, a_n , not all zero, s.t.,

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \ldots + a_n \vec{v}_n = 0.$$

• Definition: A subset S of a vector space \mathcal{V} is not linearly dependent is called *linearly independent*, i.e., **ONLY trivial** solutions for

$$a_1 \, \vec{v}_1 + a_2 \, \vec{v}_2 + \ldots + a_n \, \vec{v}_n = 0$$

- Theorem 1.6: Let \mathcal{V} be a vector space, and let $\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \mathcal{V}$. If \mathcal{S}_1 is linear dependent, then \mathcal{S}_2 is linearly dependent.
- Corollary: Let \mathcal{V} be a vector space, and let $\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \mathcal{V}$. If \mathcal{S}_2 is linear independent, then \mathcal{S}_1 is linearly independent.
- Theorem 1.7: Let S be a linearly independent subset of a vector space \mathcal{V} , and let \vec{v} be a vector in \mathcal{V} that is not in S. Then $S \cup \{\vec{v}\}$ is linearly dependent iff $\vec{v} \in \operatorname{span}(S)$.
- Definition: A basis β for a vector space \mathcal{V} is a linearly independent subset of \mathcal{V} that generates \mathcal{V} .
- Theorem 1.8: Let $\beta = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be a subset of \mathcal{V} . Then β is a basis for \mathcal{V} iff each $\vec{v} \in \mathcal{V}$ can be **uniquely** expressed as a linear combination of vector of β , that is,

$$\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \ldots + \vec{v}_n$$

for unique scalars a_1, a_2, \ldots, a_n .

- Theorem 1.9: Finite basis (finite dimension), $\dim(\mathcal{V})$
- Theorem 1.10: Replacement Theorem
- Theorem 1.11: $\dim(\mathcal{W}) \leq \dim(\mathcal{V})$
- Lagrange Interpolation Formula:

• Example:

$$f_i(x) = \prod_{k=0, k \neq i}^n \frac{x - c_k}{c_i - c_k}$$
(1, 8), (2, 5), (3, -4).

- Definition: Let \mathcal{F} be a family of sets. A member \mathcal{M} of \mathcal{F} is called *maximal* if \mathcal{M} is contained in no member of \mathcal{F} other than \mathcal{M} itself.
- Definition: Let S be a subset of a vector space \mathcal{V} . A maximal linearly independent subset of S is a subset \mathcal{B} of S satisfying both of the following conditions:
 - 1. \mathcal{B} is linearly independent.
 - 2. The only linearly independent subset of S that contains \mathcal{B} is \mathcal{B} itself.
- Corollary 1.13: Every vector space has a basis.