Linear Algebra, EE 10810/EECS 205004 Note 2.1

Ray-Kuang Lee^1

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Office Hours:

1. 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.

- Integrity: Next Quiz on October 14th, Wednesday, 10:10 AM 10:30 AM.
- Assignment: for the Quiz on Oct. 21st
 - 1. Let \mathcal{V} be a vector space having dimension n, and let S be a subset of \mathcal{V} that generate \mathcal{V} .
 - (a) Prove that there is a subset of S that is a basis for \mathcal{V} .
 - (b) Prove that S contains at least n vectors.
 - 2. Let W_1 and W_2 be subspaces of a finite-dimensional vector space \mathcal{V} . Determine necessary and sufficient conditions on W_1 and W_2 so that $\dim(W_1 \cap W_2) = \dim(W_1)$.
 - 3. Prove that \mathcal{T} is a linear transformation, find bases for both $N(\mathcal{T})$ and $R(\mathcal{T})$, and calculate the nullity and rank of \mathcal{T} .
 - (a) $\mathcal{T}: \mathcal{R}^3 \to \mathcal{R}^2$ defined by $\mathcal{T}(a_1, a_2, a_3) = (a_1 a_2, 2a_3).$
 - (b) $\mathcal{T}: P_2(\mathcal{R}) \to P_3(\mathcal{R})$ defined by $\mathcal{T}(f(x)) = x f(x) + f'(x)$.
 - 4. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces and $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ be linear.
 - (a) Prove that if $\dim(\mathcal{V}) < \dim(\mathcal{W})$, then \mathcal{T} cannot be *onto*.
 - (b) Prove that if $\dim(\mathcal{V}) > \dim(\mathcal{W})$, then \mathcal{T} cannot be *one-to-one*.

From Scratch !!

- Summary of Chap. 1: Vector Space:
- Vector Space $\mathcal{V}:$ Thms 1.1 1.2
- Subspace \mathcal{W} : Thms 1.3 1.4
- \bullet Generation Set, Span: Thm 1.5
- \bullet Linearly Dependence, Linearly Independence: Thms 1.6 1.7
- Basis: Thms 1.8, 1.9, 1.10 (Replacement Theorem), 1.11
- \bullet Every vector space has a basis: Thms 1.12 1.13

- Chapter 2: Linear Transformations and Matrices
- \bullet Definition: Linear Transformation ${\cal T}$
- Identity Transformation \mathcal{I} , Zero Transformation \mathcal{T}_0
- Definition: Null space (Kernel) $N(\mathcal{T})$
- Definition: Range (image) $R(\mathcal{T})$
- Theorem 2.1: $N(\mathcal{T})$ and $R(\mathcal{T})$ are subspaces of \mathcal{V} and \mathcal{W} , respectively.
- Theorem 2.2: If $\beta = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a basis of \mathcal{V} , then

 $R(\mathcal{T}) = \operatorname{span}(\mathcal{T}(\beta)) = \operatorname{span}(\{\mathcal{T}(\vec{v}_1), \mathcal{T}(\vec{v}_2), \dots, \mathcal{T}(\vec{v}_n)\})$

- Definition: Nullity(\mathcal{T}) = dim($N(\mathcal{T})$)
- Definition: $\operatorname{Rank}(\mathcal{T}) = \dim(R(\mathcal{T}))$
- Theorem 2.3 (Dimension Theorem):

 $\mathrm{nullity}(\mathcal{T}) + \mathrm{rank}(\mathcal{T}) = \dim(\mathcal{V})$

- Theorem 2.4: \mathcal{T} is one-to-one iff $N(\mathcal{T}) = \{\vec{0}\}$
- Theorem 2.5: The following are equivalent,
 - 1. ${\mathcal T}$ is one-to-one.
 - 2. \mathcal{T} is onto.
 - 3. $\operatorname{rank}(\mathcal{T}) = \dim(\mathcal{V}).$