Linear Algebra, EE 10810/EECS 205004

Note 2.1

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw

(Dated: Fall, 2020)

- Office Hours:

1. 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.

- Integrity: Next Quiz on October 14th, Wednesday, 10:10 AM - 10:30 AM.
- Assignment: for the Quiz on Oct. 21st

1. Let \mathcal{V} be a vector space having dimension n, and let S be a subset of \mathcal{V} that generate \mathcal{V}.
(a) Prove that there is a subset of S that is a basis for \mathcal{V}.
(b) Prove that S contains at least n vectors.
2. Let W_{1} and W_{2} be subspaces of a finite-dimensional vector space \mathcal{V}. Determine necessary and sufficient conditions on W_{1} and W_{2} so that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.
3. Prove that \mathcal{T} is a linear transformation, find bases for both $N(\mathcal{T})$ and $R(\mathcal{T})$, and calculate the nullity and rank of \mathcal{T}.
(a) $\mathcal{T}: \mathcal{R}^{3} \rightarrow \mathcal{R}^{2}$ defined by $\mathcal{T}\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$.
(b) $\mathcal{T}: P_{2}(\mathcal{R}) \rightarrow P_{3}(\mathcal{R})$ defined by $\mathcal{T}(f(x))=x f(x)+f^{\prime}(x)$.
4. Let \mathcal{V} and \mathcal{W} be finite-dimensional vector spaces and $\mathcal{T}: \mathcal{V} \rightarrow \mathcal{W}$ be linear.
(a) Prove that if $\operatorname{dim}(\mathcal{V})<\operatorname{dim}(\mathcal{W})$, then \mathcal{T} cannot be onto.
(b) Prove that if $\operatorname{dim}(\mathcal{V})>\operatorname{dim}(\mathcal{W})$, then \mathcal{T} cannot be one-to-one.

From Scratch !!

- Summary of Chap. 1: Vector Space:
- Vector Space \mathcal{V} : Thms 1.1-1.2
- Subspace \mathcal{W} : Thms 1.3-1.4
- Generation Set, Span: Thm 1.5
- Linearly Dependence, Linearly Independence: Thms 1.6-1.7
- Basis: Thms 1.8, 1.9, 1.10 (Replacement Theorem), 1.11
- Every vector space has a basis: Thms 1.12-1.13
- Chapter 2: Linear Transformations and Matrices
- Definition: Linear Transformation \mathcal{T}
- Identity Transformation \mathcal{I}, Zero Transformation \mathcal{T}_{0}
- Definition: Null space (Kernel) $N(\mathcal{T})$
- Definition: Range (image) $R(\mathcal{T})$
- Theorem 2.1: $N(\mathcal{T})$ and $R(\mathcal{T})$ are subspaces of \mathcal{V} and \mathcal{W}, respectively.
- Theorem 2.2: If $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis of \mathcal{V}, then

$$
R(\mathcal{T})=\operatorname{span}(\mathcal{T}(\beta))=\operatorname{span}\left(\left\{\mathcal{T}\left(\vec{v}_{1}\right), \mathcal{T}\left(\vec{v}_{2}\right), \ldots, \mathcal{T}\left(\vec{v}_{n}\right)\right\}\right)
$$

- Definition: $\operatorname{Nullity}(\mathcal{T})=\operatorname{dim}(N(\mathcal{T}))$
- Definition: $\operatorname{Rank}(\mathcal{T})=\operatorname{dim}(R(\mathcal{T}))$
- Theorem 2.3 (Dimension Theorem):

$$
\operatorname{nullity}(\mathcal{T})+\operatorname{rank}(\mathcal{T})=\operatorname{dim}(\mathcal{V})
$$

- Theorem 2.4: \mathcal{T} is one-to-one iff $N(\mathcal{T})=\{\overrightarrow{0}\}$
- Theorem 2.5: The following are equivalent,

1. \mathcal{T} is one-to-one.
2. \mathcal{T} is onto.
3. $\operatorname{rank}(\mathcal{T})=\operatorname{dim}(\mathcal{V})$.
