Linear Algebra, EE 10810/EECS 205004 **Note** 2.2

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. $Tel: \ +886\text{-}3\text{-}5742439; \ E\text{-}mail: \ rklee@ee.nthu.edu.tw$ (Dated: Fall, 2020)

• Office Hours:

1. 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.

• Assignment: for the Quiz on Oct. 21st

1. Let \mathcal{V} be a vector space of sequences $\{a_n\}$ in F. Define the function $\hat{\mathcal{T}}, \hat{\mathcal{U}}: \mathcal{V} \to \mathcal{V}$ by

$$\hat{\mathcal{T}}(a_1, a_2, \dots, a_n) = (a_2, a_3, \dots), \tag{1}$$

$$\mathcal{U}(a_1, a_2, \dots, a_n) = (0, a_1, a_2, \dots).$$
 (2)

Here, $\hat{\mathcal{T}}$ and $\hat{\mathcal{U}}$ are called the **left shift** and **right shift** operators on \mathcal{V} , respectively.

- (a) Prove that $\hat{\mathcal{T}}$ and $\hat{\mathcal{U}}$ are linear.
- (b) Prove that $\hat{\mathcal{T}}$ is onto, but not one-to-one.
- (c) Prove that $\hat{\mathcal{U}}$ is one-to-one, but not onto.

2. Let $\hat{\mathcal{T}}: \mathcal{R}^2 \to \mathcal{R}^3$ be defined by $\hat{\mathcal{T}}(a_1, a_2) = (a_1 - a_2, a_1, 2a_1 + a_2)$. Let β be the standard ordered basis for \mathcal{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}.$

- (a) Computer $\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma}$.
- (b) If $\alpha = \{(1,2), (2,3)\}, \text{ compute } [\hat{\mathcal{T}}]_{\alpha}^{\gamma}$.

3. Define

$$\hat{\mathcal{T}}: \overline{\overline{M}}_{2\times 2}(\mathcal{R}) \to P_2(\mathcal{R}), \quad \text{by} \quad \hat{\mathcal{T}} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d) x + b x^2.$$

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \quad \text{and} \quad \gamma = \left\{ 1, x, x^2 \right\}.$$

Let

$$\beta = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \quad \text{and} \quad \gamma = \left\{ 1, x, x^2 \right\}$$

Computer $\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma}$.

4. Let \mathcal{V} and \mathcal{W} be vector spaces and let $\hat{\mathcal{T}}$ and $\hat{\mathcal{U}}$ be nonzero lienar transformations from \mathcal{V} to \mathcal{W} . If $R(\hat{\mathcal{T}}) \cap R(\hat{\mathcal{U}}) = \{\vec{0}\},$ prove that $\{\hat{\mathcal{T}}, \hat{\mathcal{U}}\}\$ is a linearly independent subset of $\hat{\mathcal{L}}(\mathcal{V}, \mathcal{W})$.

From Scratch !!

• Definition: A function $\hat{\mathcal{T}}: \mathcal{V} \to \mathcal{W}$ is called *Linear Transformation* from \mathcal{V} to \mathcal{W} if, for all $\vec{x}, \vec{y} \in \mathcal{V}$ and $c \in F$, we have

$$\hat{\mathcal{T}}(c\,\vec{x}+\vec{y}) = c\,\hat{\mathcal{T}}(\vec{x}) + \hat{\mathcal{T}}(\vec{y}). \tag{3}$$

- Identity Transformation $\hat{\mathcal{I}}$
- Zero Transformation $\hat{\mathcal{T}}_0$
- Definition: Null space (kernel) $\mathcal{N}(\hat{\mathcal{T}}) = \{\vec{x} \in \mathcal{V} : \hat{\mathcal{T}}(\vec{x}) = \vec{0}\}.$
- Definition: Range (image) $R(\mathcal{T}) = \{\hat{\mathcal{T}}(\vec{x}), \vec{x} \in \mathcal{V}\}.$
- If $f: A \to B$, then A is called the *domain* of f; B is called the *codomain* of f, and the set $\{f(x), x \in A\}$ is called the **range** of f.
- If $x \in A$, then f(x) is called the *image* of x, and x is called the *preimage* of f(x).
- If $f: A \to B$ is a function with **range** B, that is, if f(A) = B, then f is called **onto**.
- If each element of the range has a unique preimage, $f: A \to B$ is called **on-to-one**; that is

$$f: A \to B \qquad \text{if} \quad f(x) = f(y) \quad \text{implies} \quad x = y, \quad \text{or} \tag{4}$$

if $x \neq y \quad \text{implies} \quad f(x) \neq f(y). \tag{5}$

- Theorem 2.1: $N(\hat{\mathcal{T}})$ and $R(\hat{\mathcal{T}})$ are subspaces of \mathcal{V} and \mathcal{W} , respectively.
- Theorem 2.2: If $\beta = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a basis of \mathcal{V} , then

$$R(\hat{\mathcal{T}}) = \operatorname{span}(\hat{\mathcal{T}}(\beta)) = \operatorname{span}(\{\hat{\mathcal{T}}(\vec{v}_1), \hat{\mathcal{T}}(\vec{v}_2), \dots, \hat{\mathcal{T}}(\vec{v}_n)\})$$
(6)

- Definition: Nullity $(\hat{\mathcal{T}}) = \dim(N(\hat{\mathcal{T}}))$
- Definition: $\operatorname{Rank}(\hat{\mathcal{T}}) = \dim(R(\hat{\mathcal{T}}))$
- Theorem 2.3 (Dimension Theorem):

$$\operatorname{nullity}(\hat{\mathcal{T}}) + \operatorname{rank}(\hat{\mathcal{T}}) = \dim(\mathcal{V}) \tag{7}$$

- Theorem 2.4: $\hat{\mathcal{T}}$ is one-to-one iff $N(\hat{\mathcal{T}}) = \{\vec{0}\}$
- Theorem 2.5: The following are equivalent,
 - 1. $\hat{\mathcal{T}}$ is one-to-one.
 - 2. $\hat{\mathcal{T}}$ is onto.
 - 3. $\operatorname{rank}(\hat{\mathcal{T}}) = \dim(\mathcal{V}).$
- Theorem 2.6: Suppose $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is a basis for \mathcal{V} , there exists exactly one linear transformation $\hat{\mathcal{T}} : \mathcal{V} \to \mathcal{W}$ such that $\hat{\mathcal{T}}(\vec{v}_i) = \vec{w}_i$, for $i = 1, 2, \ldots, n$ and $\vec{w}_j \in \mathcal{W}$.
- Matrix representation
- Definition: ordered basis, standard ordered basis, coordinate vectors
- $\vec{x} = \sum_{i=1}^{n} a_i, \vec{v}_i,$

$$[\vec{x}]_{\beta} = |x\rangle_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_n \end{pmatrix}$$
(8)

• Matrix representation of $\hat{\mathcal{T}}$ in the ordered bases β and γ :

$$\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma} \tag{9}$$

- Theorem 2.7: Let $\hat{\mathcal{T}}, \hat{\mathcal{U}}: \mathcal{V} \to \mathcal{W}$ be linear, then for all $a \in F$, $a\hat{\mathcal{T}} + \hat{\mathcal{U}}$ is linear.
- Definition: $\mathcal{L}(\mathcal{V}, \mathcal{W})$ denotes the vector space of all linear transformation from \mathcal{V} into \mathcal{W}
- Theorem 2.8: $\left[\hat{\mathcal{T}} + \hat{\mathcal{U}}\right]_{\beta}^{\gamma} = \left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma} + \left[\hat{\mathcal{U}}\right]_{\beta}^{\gamma} \text{ and } \left[a\,\hat{\mathcal{T}}\right]_{\beta}^{\gamma} = a\,\left[\hat{\mathcal{T}}\right]_{\beta}^{\gamma}$