Linear Algebra, EE 10810/EECS 205004

Note 2.2

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Office Hours:

1. 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.

- Assignment: for the Quiz on Oct. 21st

1. Let \mathcal{V} be a vector space of sequences $\left\{a_{n}\right\}$ in F. Define the function $\hat{\mathcal{T}}, \hat{\mathcal{U}}: \mathcal{V} \rightarrow \mathcal{V}$ by

$$
\begin{align*}
\hat{\mathcal{T}}\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\left(a_{2}, a_{3}, \ldots\right) \tag{1}\\
\hat{\mathcal{U}}\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\left(0, a_{1}, a_{2}, \ldots\right) \tag{2}
\end{align*}
$$

Here, $\hat{\mathcal{T}}$ and $\hat{\mathcal{U}}$ are called the left shift and right shift operators on \mathcal{V}, respectively.
(a) Prove that $\hat{\mathcal{T}}$ and $\hat{\mathcal{U}}$ are linear.
(b) Prove that $\hat{\mathcal{T}}$ is onto, but not one-to-one.
(c) Prove that $\hat{\mathcal{U}}$ is one-to-one, but not onto.
2. Let $\hat{\mathcal{T}}: \mathcal{R}^{2} \rightarrow \mathcal{R}^{3}$ be defined by $\hat{\mathcal{T}}\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}\right)$. Let β be the standard ordered basis for \mathcal{R}^{2} and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$.
(a) Computer $[\hat{\mathcal{T}}]_{\beta}^{\gamma}$.
(b) If $\alpha=\{(1,2),(2,3)\}$, compute $[\hat{\mathcal{T}}]_{\alpha}^{\gamma}$.
3. Define

$$
\hat{\mathcal{T}}: \overline{\bar{M}}_{2 \times 2}(\mathcal{R}) \rightarrow P_{2}(\mathcal{R}), \quad \text { by } \quad \hat{\mathcal{T}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+b)+(2 d) x+b x^{2} .
$$

Let

$$
\beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \quad \text { and } \quad \gamma=\left\{1, x, x^{2}\right\}
$$

Computer $[\hat{\mathcal{T}}]_{\beta}^{\gamma}$.
4. Let \mathcal{V} and \mathcal{W} be vector spaces and let $\hat{\mathcal{T}}$ and $\hat{\mathcal{U}}$ be nonzero lienar transformations from \mathcal{V} to \mathcal{W}. If $R(\hat{\mathcal{T}}) \cap R(\hat{\mathcal{U}})=\{\overrightarrow{0}\}$, prove that $\{\hat{\mathcal{T}}, \hat{\mathcal{U}}\}$ is a linearly independent subset of $\hat{\mathcal{L}}(\mathcal{V}, \mathcal{W})$.

From Scratch !!

- Definition: A function $\hat{\mathcal{T}}: \mathcal{V} \rightarrow \mathcal{W}$ is called Linear Transformation from \mathcal{V} to \mathcal{W} if, for all $\vec{x}, \vec{y} \in \mathcal{V}$ and $c \in F$, we have

$$
\begin{equation*}
\hat{\mathcal{T}}(c \vec{x}+\vec{y})=c \hat{\mathcal{T}}(\vec{x})+\hat{\mathcal{T}}(\vec{y}) \tag{3}
\end{equation*}
$$

- Identity Transformation $\hat{\mathcal{I}}$
- Zero Transformation $\hat{\mathcal{T}}_{0}$
- Definition: Null space (kernel) $\mathcal{N}(\hat{\mathcal{T}})=\{\vec{x} \in \mathcal{V}: \hat{\mathcal{T}}(\vec{x})=\overrightarrow{0}\}$.
- Definition: Range (image) $R(\mathcal{T})=\{\hat{\mathcal{T}}(\vec{x}), \vec{x} \in \mathcal{V}\}$.
- If $f: A \rightarrow B$, then A is called the domain of $f ; B$ is called the codomain of f, and the set $\{f(x), x \in A\}$ is called the range of f.
- If $x \in A$, then $f(x)$ is called the image of x, and x is called the preimage of $f(x)$.
- If $f: A \rightarrow B$ is a function with range B, that is, if $f(A)=B$, then f is called onto.
- If each element of the range has a unique preimage, $f: A \rightarrow B$ is called on-to-one; that is

$$
\begin{array}{llll}
f: A \rightarrow B & \text { if } & f(x)=f(y) \text { implies } x=y, \quad \text { or } \\
& \text { if } & x \neq y \text { implies } f(x) \neq f(y) . \tag{5}
\end{array}
$$

- Theorem 2.1: $N(\hat{\mathcal{T}})$ and $R(\hat{\mathcal{T}})$ are subspaces of \mathcal{V} and \mathcal{W}, respectively.
- Theorem 2.2: If $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis of \mathcal{V}, then

$$
\begin{equation*}
R(\hat{\mathcal{T}})=\operatorname{span}(\hat{\mathcal{T}}(\beta))=\operatorname{span}\left(\left\{\hat{\mathcal{T}}\left(\vec{v}_{1}\right), \hat{\mathcal{T}}\left(\vec{v}_{2}\right), \ldots, \hat{\mathcal{T}}\left(\vec{v}_{n}\right)\right\}\right) \tag{6}
\end{equation*}
$$

- Definition: $\operatorname{Nullity}(\hat{\mathcal{T}})=\operatorname{dim}(N(\hat{\mathcal{T}}))$
- Definition: $\operatorname{Rank}(\hat{\mathcal{T}})=\operatorname{dim}(R(\hat{\mathcal{T}}))$
- Theorem 2.3 (Dimension Theorem):

$$
\begin{equation*}
\operatorname{nullity}(\hat{\mathcal{T}})+\operatorname{rank}(\hat{\mathcal{T}})=\operatorname{dim}(\mathcal{V}) \tag{7}
\end{equation*}
$$

- Theorem 2.4: $\hat{\mathcal{T}}$ is one-to-one iff $N(\hat{\mathcal{T}})=\{\overrightarrow{0}\}$
- Theorem 2.5: The following are equivalent,

1. $\hat{\mathcal{T}}$ is one-to-one.
2. $\hat{\mathcal{T}}$ is onto.
3. $\operatorname{rank}(\hat{\mathcal{T}})=\operatorname{dim}(\mathcal{V})$.

- Theorem 2.6: Suppose $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is a basis for \mathcal{V}, there exists exactly one linear transformation $\hat{\mathcal{T}}: \mathcal{V} \rightarrow \mathcal{W}$ such that $\hat{\mathcal{T}}\left(\vec{v}_{i}\right)=\vec{w}_{i}$, for $i=1,2, \ldots, n$ and $\vec{w}_{j} \in \mathcal{W}$.
- Matrix representation
- Definition: ordered basis, standard ordered basis, coordinate vectors
- $\vec{x}=\sum_{i=1}^{n} a_{i}, \vec{v}_{i}$,

$$
[\vec{x}]_{\beta}=|x\rangle_{\beta}=\left(\begin{array}{c}
a_{1} \tag{8}\\
a_{2} \\
\cdot \\
\cdot \\
a_{n}
\end{array}\right)
$$

- Matrix representation of $\hat{\mathcal{T}}$ in the ordered bases β and γ :

$$
\begin{equation*}
[\hat{\mathcal{T}}]_{\beta}^{\gamma} \tag{9}
\end{equation*}
$$

- Theorem 2.7: Let $\hat{\mathcal{T}}, \hat{\mathcal{U}}: \mathcal{V} \rightarrow \mathcal{W}$ be linear, then for all $a \in F, a \hat{\mathcal{T}}+\hat{\mathcal{U}}$ is linear.
- Definition: $\mathcal{L}(\mathcal{V}, \mathcal{W})$ denotes the vector space of all linear transformation from \mathcal{V} into \mathcal{W}
- Theorem 2.8: $[\hat{\mathcal{T}}+\hat{\mathcal{U}}]_{\beta}^{\gamma}=[\hat{\mathcal{T}}]_{\beta}^{\gamma}+[\hat{\mathcal{U}}]_{\beta}^{\gamma}$ and $[a \hat{\mathcal{T}}]_{\beta}^{\gamma}=a[\hat{\mathcal{T}}]_{\beta}^{\gamma}$

