Linear Algebra, EE 10810/EECS 205004

Note 2.4-2.5

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.
- Assignment: for the Quiz on Oct. 28th

1. Let \mathcal{V} be a finite-dimensional vector space, and let $\hat{\mathcal{T}}: \mathcal{V} \rightarrow \mathcal{V}$ be linear.
(a) If $\operatorname{rank}(\hat{\mathcal{T}})=\operatorname{rank}\left(\hat{\mathcal{T}}^{2}\right)$, prove that $R(\hat{\mathcal{T}}) \cap N(\hat{\mathcal{T}})=\{\overrightarrow{0}\}$.
(b) Deduce that $\mathcal{V}=R(\hat{\mathcal{T}}) \oplus N(\hat{\mathcal{T}})$.
(c) Prove that $\mathcal{V}=R\left(\hat{\mathcal{T}}^{k}\right) \oplus N\left(\hat{\mathcal{T}}^{k}\right)$ for some positive integer k.
2. Let $\overline{\bar{A}}$ and $\overline{\bar{B}}$ be $n \times n$ invertible matrices. Prove that
(a) $\overline{\overline{A B}}$ is invertible.
(b) $(\overline{\overline{A B}})^{-1}=\overline{\overline{B^{-1} A^{-1}}}$.
3. Let

$$
\mathcal{V}=\left\{\left(\begin{array}{cc}
a & a+b \tag{1}\\
0 & c
\end{array}\right): a, b, c \in F\right\}
$$

Construct an isomorphism from \mathcal{V} to F^{3}.
4. For each matrix $\overline{\bar{A}}$ and ordered basis β, find $\left[\hat{L}_{A}\right]_{\beta}$ and an invertible matrix $\overline{\bar{Q}}$ such that $\left[\hat{L}_{A}\right]_{\beta}=\overline{\overline{Q^{-1}} \overline{\overline{A Q}}}$.
(a)

$$
\overline{\bar{A}}=\left(\begin{array}{ll}
1 & 3 \tag{2}\\
1 & 1
\end{array}\right), \quad \text { and } \quad \beta=\left\{\binom{1}{1},\binom{1}{2}\right\}
$$

(b)

$$
\overline{\bar{A}}=\left(\begin{array}{rrr}
1 & 1 & -1 \tag{3}\\
2 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad \text { and } \quad \beta=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right\}
$$

From Scratch !!

- The product of $\overline{\bar{A}}_{m \times n}$ and $\overline{\bar{B}}_{n \times p}$, denoted as $\overline{\overline{A B}}_{m \times p}$, s.t.

$$
\begin{equation*}
(\overline{\overline{A B}})_{i j}=\sum_{k=1}^{n} A_{j k} B_{k j}, \quad \text { for } \quad 1 \leq i \leq m, \quad 1 \leq j \leq p \tag{4}
\end{equation*}
$$

- Theorem 2.11: $[\hat{\mathcal{U}} \hat{\mathcal{T}}]_{\alpha}^{\gamma}=[\hat{\mathcal{U}}]_{\beta}^{\gamma}[\hat{\mathcal{T}}]_{\alpha}^{\beta}$
- Theorem 2.12:

1. $\overline{\bar{A}}(\overline{\bar{B}}+\overline{\bar{C}})=\overline{\overline{A B}}+\overline{\overline{A C}}$
2. $a(\overline{\overline{A B}})=(a \overline{\bar{A}}) \overline{\bar{B}}=\overline{\bar{A}}(a \overline{\bar{B}})$
3. $\overline{\bar{I}}_{m} \overline{\bar{A}}_{m \times n}=\overline{\bar{A}}_{m \times n}=\overline{\bar{A}}_{m \times n} \overline{\bar{I}}_{n}$

- Theorem 2.13: Column Vectors

$$
\vec{u}_{j}=\left(\begin{array}{c}
(\overline{\overline{A B}})_{1 j} \tag{5}\\
(\overline{\overline{A B}})_{2 j} \\
\vdots \\
\vdots \\
(\overline{\overline{A B}})_{m j}
\end{array}\right)=\overline{\bar{A}}\left(\begin{array}{c}
(\overline{\bar{B}})_{1 j} \\
(\overline{\bar{B}})_{2 j} \\
\vdots \\
\vdots \\
(\overline{\bar{B}})_{m j}
\end{array}\right)=\overline{\bar{A}} \vec{v}_{j}
$$

- Theorem 2.14: For each $\vec{u} \in \mathcal{V}$,

$$
\begin{equation*}
[\hat{\mathcal{T}}(\vec{u})]_{\gamma}=[\hat{\mathcal{T}}]_{\beta}^{\gamma}[\vec{u}]_{\beta} \tag{6}
\end{equation*}
$$

- Definition: Left-multiplication transformation, $\hat{L}_{A}: F^{n} \rightarrow F^{m}$,

$$
\begin{equation*}
\hat{L}_{A}(\vec{x})=\overline{\bar{A}} \vec{x} \tag{7}
\end{equation*}
$$

- Theorem 2.15:

1. $\left[\hat{L}_{A}\right]_{\beta}^{\gamma}=\overline{\bar{A}}$.
2. $\hat{L}_{A}=\hat{L}_{B}$ iff $\overline{\bar{A}}=\overline{\bar{B}}$.
3. $\hat{L}_{A+B}=\hat{L}_{A}+\hat{L}_{B}$ and $\hat{L}_{a A}=a \hat{L}_{A}$ for all $a \in F$.
4. If $\hat{\mathcal{T}}: F^{n} \rightarrow F^{m}$ is linear, ヨ! an $m \times n$ matrix $\overline{\bar{C}}$ s.t. $\hat{\mathcal{T}}=\hat{L}_{C}$. In fact $\overline{\bar{C}}=[\hat{\mathcal{T}}]_{\beta}^{\gamma}$.
5. If $\overline{\bar{E}}$ is an $n \times p$ matrix, then $\hat{L}_{A E}=\hat{L}_{A} \hat{L}_{E}$.
6. If $m=n$, then $\hat{L}_{I_{n}}=\overline{\bar{I}}_{F^{n}}$.

- Theorem 2.16: matrix multiplication is associative, $\overline{\bar{A}}(\overline{\overline{B C}})=(\overline{\overline{A B}}) \overline{\bar{C}}$
- Definition: A function $\hat{U}: \mathcal{W} \rightarrow \mathcal{V}$ is said to be an inverse of $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$ if

$$
\begin{equation*}
\hat{T} \hat{U}=\hat{I}_{\mathcal{W}} \quad \text { and } \quad \hat{U} \hat{T}=\hat{I}_{\mathcal{V}} \tag{8}
\end{equation*}
$$

- Definition: If \hat{T} has an inverse, then \hat{T} is invertible.
- Theorem 2.17: $\hat{T}^{-1}: \mathcal{W} \rightarrow \mathcal{V}$ is linear.
- Definition: $\overline{\bar{A}}_{n \times n}$ is invertible $\exists \overline{\bar{B}}_{n \times n}$ s.t. $\overline{\overline{A B}}=\overline{\overline{B A}}=\overline{\bar{I}}$.
- Theorem 2.18: \hat{T} is invertible iff $[\hat{T}]_{\beta}^{\gamma}$ is invertible, $\left[\hat{T}^{-1}\right]_{\gamma}^{\beta}=\left([\hat{T}]_{\beta}^{\gamma}\right)^{-1}$.
- Definition: \mathcal{V} is isomorphic to \mathcal{W} if there exists a linear transformation $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$ that is invertible.
- Theorem 2.19: \mathcal{V} is isomorphic to \mathcal{W} iff $\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\mathcal{W})$.
- Theorem 2.20: The function $\Phi: \mathcal{L}(\mathcal{V}, \mathcal{W}) \rightarrow \overline{\bar{M}}_{m \times n}(F)$, defined by $\Phi(\hat{T})=[\hat{T}]_{\beta}^{\gamma}$ for $\hat{T} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ is an isomorphism.
- Definition: standard representation of \mathcal{V} with respect to β is the function $\phi_{\beta}: \mathcal{V} \rightarrow F^{n}$, defined by $\phi_{\beta}(\vec{x})=[\vec{x}]_{\beta}$ for each $\vec{x} \in \mathcal{V}$.
- Theorem 2.21: For any finite-dimensional vector space \mathcal{V} with ordered basis β, ϕ_{β} is an isomorphism.
- Theorem 2.22: $\overline{\bar{Q}}=[I \mathcal{V}]_{\beta^{\prime}}^{\beta}$ is invertible, for any $\vec{v} \in \mathcal{V},[\vec{v}]_{\beta}=\overline{\bar{Q}}[\vec{v}]_{\beta^{\prime}}$, i.e., compared to the bases: $\vec{x}_{j}^{\prime}=\sum_{i=1}^{n} Q_{i j} \vec{x}_{i}$.
- Theorem 2.23: linear operator $[\hat{T}]_{\beta^{\prime}}=\overline{\bar{Q}}^{-1}[\hat{T}]_{\beta} \overline{\bar{Q}}$
- Definition: $\overline{\bar{B}}_{n \times n}$ is similar to $\overline{\bar{A}}_{n \times n}$ if \exists an invertible matrix $\overline{\bar{Q}}$ s.t. $\overline{\bar{B}}=\overline{\bar{Q}}^{-1} \overline{\overline{A Q}}$.

