Linear Algebra, EE 10810/EECS 205004

Note 2.5 - 2.6

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.

• Assignment:

1. Prove that if $\overline{\overline{A}}$ and $\overline{\overline{B}}$ are similar $n \times n$ matrices, then $\operatorname{tr}(\overline{\overline{A}}) = \operatorname{tr}(\overline{\overline{B}})$.

2. Let $\mathcal{V} = \mathcal{R}^2$, is f(x, y) = (2x, 4y) a linear functional on \mathcal{V} ?

3. Let $\mathcal{V} = P_2 \mathcal{R}$ with the bases $\beta = \{1, x, x^2\}$, find explicit formulas for vectors of the dual basis β^* for \mathcal{V}^* .

From Scratch !!

• Theorem 2.14: For each $\vec{u} \in \mathcal{V}$,

$$[\hat{\mathcal{T}}(\vec{u})]_{\gamma} = [\hat{\mathcal{T}}]^{\gamma}_{\beta} [\vec{u}]_{\beta} \tag{1}$$

• Theorem 2.15:

1. $[\hat{L}_{A}]_{\beta}^{\gamma} = \overline{\overline{A}}$. 2. $\hat{L}_{A} = \hat{L}_{B}$ iff $\overline{\overline{A}} = \overline{\overline{B}}$. 3. $\hat{L}_{A+B} = \hat{L}_{A} + \hat{L}_{B}$ and $\hat{L}_{aA} = a\hat{L}_{A}$ for all $a \in F$. 4. If $\hat{\mathcal{T}} : F^{n} \to F^{m}$ is linear, $\exists !$ an $m \times n$ matrix $\overline{\overline{C}}$ s.t. $\hat{\mathcal{T}} = \hat{L}_{C}$. In fact $\overline{\overline{C}} = [\hat{\mathcal{T}}]_{\beta}^{\gamma}$. 5. If $\overline{\overline{E}}$ is an $n \times p$ matrix, then $\hat{L}_{AE} = \hat{L}_{A}\hat{L}_{E}$. 6. If m = n, then $\hat{L}_{I_{n}} = \overline{\overline{I}}_{F^{n}}$.

- Theorem 2.16: matrix multiplication is associative, $\overline{\overline{A}}(\overline{\overline{BC}}) = (\overline{\overline{AB}})\overline{\overline{C}}$
- Definition: A function $\hat{U}: \mathcal{W} \to \mathcal{V}$ is said to be an **inverse** of $\hat{T}: \mathcal{V} \to \mathcal{W}$ if

$$\hat{T}\hat{U} = \hat{I}_{\mathcal{W}} \quad \text{and} \quad \hat{U}\hat{T} = \hat{I}_{\mathcal{V}}$$

$$\tag{2}$$

- Definition: If \hat{T} has an inverse, then \hat{T} is *invertible*.
- Theorem 2.17: $\hat{T}^{-1} : \mathcal{W} \to \mathcal{V}$ is linear.
- Definition: $\overline{\overline{A}}_{n \times n}$ is invertible $\exists \overline{\overline{B}}_{n \times n}$ s.t. $\overline{\overline{AB}} = \overline{\overline{BA}} = \overline{\overline{I}}$.
- Theorem 2.18: \hat{T} is invertible iff $[\hat{T}]^{\gamma}_{\beta}$ is invertible, $[\hat{T}^{-1}]^{\beta}_{\gamma} = ([\hat{T}]^{\gamma}_{\beta})^{-1}$.
- Definition: \mathcal{V} is isomorphic to \mathcal{W} if there exists a linear transformation $\hat{T}: \mathcal{V} \to \mathcal{W}$ that is invertible.
- Theorem 2.19: \mathcal{V} is isomorphic to \mathcal{W} iff $dim(\mathcal{V}) = dim(\mathcal{W})$.
- Theorem 2.20: The function $\Phi: \mathcal{L}(\mathcal{V}, \mathcal{W}) \to \overline{\overline{M}}_{m \times n}(F)$, defined by $\Phi(\hat{T}) = [\hat{T}]^{\gamma}_{\beta}$ for $\hat{T} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ is an *isomorphism*.
- Definition: standard representation of \mathcal{V} with respect to β is the function $\phi_{\beta} : \mathcal{V} \to F^n$, defined by $\phi_{\beta}(\vec{x}) = [\vec{x}]_{\beta}$ for each $\vec{x} \in \mathcal{V}$.
- Theorem 2.21: For any finite-dimensional vector space \mathcal{V} with ordered basis β , ϕ_{β} is an isomorphism.
- Theorem 2.22: $\overline{\overline{Q}} = [I_{\mathcal{V}}]^{\beta}_{\beta'}$ is invertible, for any $\vec{v} \in \mathcal{V}$, $[\vec{v}]_{\beta} = \overline{\overline{Q}}[\vec{v}]_{\beta'}$, i.e., compared to the bases: $\vec{x}'_{j} = \sum_{i=1}^{n} Q_{ij}\vec{x}_{i}$.

• Theorem 2.23: linear operator
$$[\hat{T}]_{\beta'} = \overline{\overline{Q}}^{-1} [\hat{T}]_{\beta} \overline{\overline{Q}}$$

- Definition: $\overline{\overline{B}}_{n \times n}$ is similar to $\overline{\overline{A}}_{n \times n}$ if \exists an invertible matrix $\overline{\overline{Q}}$ s.t. $\overline{\overline{B}} = \overline{\overline{Q}}^{-1} \overline{\overline{AQ}}$.
- Definition: the **dual space** of \mathcal{V} is the vector space $\mathcal{L}(\mathcal{V}, F)$, denoted by \mathcal{V}^* .
- Theorem 2.24: Let $\beta = {\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n}$ be the ordered basis of \mathcal{V} , and we can find $\beta^* = {\vec{f}_1, \vec{f}_2, \dots, \vec{f}_n}$ as an ordered basis for \mathcal{V}^* , for any $f \in \mathcal{V}^*$, we have

$$f = \sum_{i=1}^{n} f(\vec{x}_i) f_i.$$
 (3)

- Definition: the ordered bases $\beta^* = \{\vec{f_1}, \vec{f_2}, \dots, \vec{f_n}\}$ of \mathcal{V}^* that satisfies $f_i(\vec{x_j}) = \delta_{ij}$ is called the **dual basis** of β .
- Theorem 2.25: for any linear transformation $\hat{T} : \mathcal{V} \to \mathcal{W}$, the mapping $\hat{T}^t : \mathcal{W}^* \to \mathcal{V}^*$ defined by $\hat{T}^t(g) = g\hat{T}$ for all $g \in \mathcal{W}^*$ is a linear transformation with the property hat

$$\left[\hat{T}^{t}\right]_{\gamma^{*}}^{\beta^{*}} = \left(\left[\hat{T}\right]_{\beta}^{\gamma}\right)^{t} \tag{4}$$

- Definition: for a $\vec{x} \in \mathcal{V}$, the **linear functional** on \mathcal{V}^* is defined as $\hat{x}: \mathcal{V}^* \to F$ by $\hat{x} = f(x)$.
- Lemma: If $\hat{x}(f) = 0$ for all $f \in \mathcal{V}^*$, then $\vec{x} = 0$.
- Theorem 2.26: $\psi : \mathcal{V} \to \mathcal{V}^{**}$ by $\psi(\vec{x}) = \hat{x}$ is an isomorphism.
- Corollary: every ordered basis for \mathcal{V}^* is the dual basis for some basis for \mathcal{V} .