Linear Algebra, EE 10810/EECS 205004

Note 2.5-2.6

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- 1st Exam on Oct. 30th, (10:10AM - 1:00 PM, Friday), covering Chap. 1 and Chap. 2.
- Assignment:

1. Prove that if $\overline{\bar{A}}$ and $\overline{\bar{B}}$ are similar $n \times n$ matrices, then $\operatorname{tr}(\overline{\bar{A}})=\operatorname{tr}(\overline{\bar{B}})$.
2. Let $\mathcal{V}=\mathcal{R}^{2}$, is $f(x, y)=(2 x, 4 y)$ a linear functional on \mathcal{V} ?
3. Let $\mathcal{V}=P_{2} \mathcal{R}$ with the bases $\beta=\left\{1, x, x^{2}\right\}$, find explicit formulas for vectors of the dual basis β^{*} for \mathcal{V}^{*}.

From Scratch !!

- Theorem 2.14: For each $\vec{u} \in \mathcal{V}$,

$$
\begin{equation*}
[\hat{\mathcal{T}}(\vec{u})]_{\gamma}=[\hat{\mathcal{T}}]_{\beta}^{\gamma}[\vec{u}]_{\beta} \tag{1}
\end{equation*}
$$

- Theorem 2.15:

1. $\left[\hat{L}_{A}\right]_{\beta}^{\gamma}=\overline{\bar{A}}$.
2. $\hat{L}_{A}=\hat{L}_{B}$ iff $\overline{\bar{A}}=\overline{\bar{B}}$.
3. $\hat{L}_{A+B}=\hat{L}_{A}+\hat{L}_{B}$ and $\hat{L}_{a A}=a \hat{L}_{A}$ for all $a \in F$.
4. If $\hat{\mathcal{T}}: F^{n} \rightarrow F^{m}$ is linear, \exists ! an $m \times n$ matrix $\overline{\bar{C}}$ s.t. $\hat{\mathcal{T}}=\hat{L}_{C}$. In fact $\overline{\bar{C}}=[\hat{\mathcal{T}}]_{\beta}^{\gamma}$.
5. If $\overline{\bar{E}}$ is an $n \times p$ matrix, then $\hat{L}_{A E}=\hat{L}_{A} \hat{L}_{E}$.
6. If $m=n$, then $\hat{L}_{I_{n}}=\overline{\bar{I}}_{F^{n}}$.

- Theorem 2.16: matrix multiplication is associative, $\overline{\bar{A}}(\overline{\overline{B C}})=(\overline{\overline{A B}}) \overline{\bar{C}}$
- Definition: A function $\hat{U}: \mathcal{W} \rightarrow \mathcal{V}$ is said to be an inverse of $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$ if

$$
\begin{equation*}
\hat{T} \hat{U}=\hat{I}_{\mathcal{W}} \quad \text { and } \quad \hat{U} \hat{T}=\hat{I}_{\mathcal{V}} \tag{2}
\end{equation*}
$$

- Definition: If \hat{T} has an inverse, then \hat{T} is invertible.
- Theorem 2.17: $\hat{T}^{-1}: \mathcal{W} \rightarrow \mathcal{V}$ is linear.
- Definition: $\overline{\bar{A}}_{n \times n}$ is invertible $\exists \overline{\bar{B}}_{n \times n}$ s.t. $\overline{\overline{A B}}=\overline{\overline{B A}}=\overline{\bar{I}}$.
- Theorem 2.18: \hat{T} is invertible iff $[\hat{T}]_{\beta}^{\gamma}$ is invertible, $\left[\hat{T}^{-1}\right]_{\gamma}^{\beta}=\left([\hat{T}]_{\beta}^{\gamma}\right)^{-1}$.
- Definition: \mathcal{V} is isomorphic to \mathcal{W} if there exists a linear transformation $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$ that is invertible.
- Theorem 2.19: \mathcal{V} is isomorphic to \mathcal{W} iff $\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\mathcal{W})$.
- Theorem 2.20: The function $\Phi: \mathcal{L}(\mathcal{V}, \mathcal{W}) \rightarrow \overline{\bar{M}}_{m \times n}(F)$, defined by $\Phi(\hat{T})=[\hat{T}]_{\beta}^{\gamma}$ for $\hat{T} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ is an isomorphism.
- Definition: standard representation of \mathcal{V} with respect to β is the function $\phi_{\beta}: \mathcal{V} \rightarrow F^{n}$, defined by $\phi_{\beta}(\vec{x})=[\vec{x}]_{\beta}$ for each $\vec{x} \in \mathcal{V}$.
- Theorem 2.21: For any finite-dimensional vector space \mathcal{V} with ordered basis β, ϕ_{β} is an isomorphism.
- Theorem 2.22: $\overline{\bar{Q}}=\left[I_{\mathcal{V}}\right]_{\beta^{\prime}}^{\beta}$ is invertible, for any $\vec{v} \in \mathcal{V},[\vec{v}]_{\beta}=\overline{\bar{Q}}[\vec{v}]_{\beta^{\prime}}$, i.e., compared to the bases: $\vec{x}_{j}^{\prime}=\sum_{i=1}^{n} Q_{i j} \vec{x}_{i}$.
- Theorem 2.23: linear operator $[\hat{T}]_{\beta^{\prime}}=\overline{\bar{Q}}^{-1}[\hat{T}]_{\beta} \overline{\bar{Q}}$
- Definition: $\overline{\bar{B}}_{n \times n}$ is similar to $\overline{\bar{A}}_{n \times n}$ if \exists an invertible matrix $\overline{\bar{Q}}$ s.t. $\overline{\bar{B}}=\overline{\bar{Q}}^{-1} \overline{\overline{A Q}}$.
- Definition: the dual space of \mathcal{V} is the vector space $\mathcal{L}(\mathcal{V}, F)$, denoted by \mathcal{V}^{*}.
- Theorem 2.24: Let $\beta=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ be the ordered basis of \mathcal{V}, and we can find $\beta^{*}=\left\{\vec{f}_{1}, \vec{f}_{2}, \ldots, \vec{f}_{n}\right\}$ as an ordered basis for \mathcal{V}^{*}, for any $f \in \mathcal{V}^{*}$, we have

$$
\begin{equation*}
f=\sum_{i=1}^{n} f\left(\vec{x}_{i}\right) f_{i} . \tag{3}
\end{equation*}
$$

- Definition: the ordered bases $\beta^{*}=\left\{\vec{f}_{1}, \overrightarrow{f_{2}}, \ldots, \vec{f}_{n}\right\}$ of \mathcal{V}^{*} that satisfies $f_{i}\left(\vec{x}_{j}\right)=\delta_{i j}$ is called the dual basis of β.
- Theorem 2.25: for any linear transformation $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$, the mapping $\hat{T}^{t}: \mathcal{W}^{*} \rightarrow \mathcal{V}^{*}$ definted by $\hat{T}^{t}(g)=g \hat{T}$ for all $g \in \mathcal{W}^{*}$ is a linear transformation with the property hat

$$
\begin{equation*}
\left[\hat{T}^{t}\right]_{\gamma^{*}}^{\beta^{*}}=\left([\hat{T}]_{\beta}^{\gamma}\right)^{t} \tag{4}
\end{equation*}
$$

- Definition: for a $\vec{x} \in \mathcal{V}$, the linear functional on \mathcal{V}^{*} is defined as $\hat{x}: \mathcal{V}^{*} \rightarrow F$ by $\hat{x}=f(x)$.
- Lemma: If $\hat{x}(f)=0$ for all $f \in \mathcal{V}^{*}$, then $\vec{x}=0$.
- Theorem 2.26: $\psi: \mathcal{V} \rightarrow \mathcal{V}^{* *}$ by $\psi(\vec{x})=\hat{x}$ is an isomorphism.
- Corollary: every ordered basis for \mathcal{V}^{*} is the dual basis for some basis for \mathcal{V}.

