Linear Algebra, EE 10810/EECS 205004

Note 2.6-3.2
Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- 2nd Exam on Dec. xxth, (10:10AM - 1:00 PM, Friday), covering Chap. 2.6, Chap. 3, Chap. 4, Chap 5.
- Solutions for 1st Exam:
- 1(c): Not possible.
- 2(a): $\{1\}$
-2(b): $\{R\}, R>0 \& R \neq 1$; any positive real number, but not 1 .
$-2(\mathrm{c}): \operatorname{dim}(\mathcal{V})=1$
$-3:(\hat{I}-\hat{T})^{-1}=\hat{I}+\hat{T}+\hat{T}^{2}$
$-4(\mathrm{~b}): R(\hat{T})=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right\}$
$-4(\mathrm{c}): N(\hat{T})=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right\}$
$-6(\mathrm{~b}): d=\frac{c}{2}$
$-6(\mathrm{c}): \overline{\mathbf{B}}^{-1}=\frac{1}{50}\left[\begin{array}{rrrr}4 & -3 & -4 & 3 \\ 3 & 4 & -3 & -4 \\ 4 & -3 & 4 & -3 \\ 4 & 4 & 3 & 4\end{array}\right]$
$-6(\mathrm{~d}): \overline{\overline{\mathbf{B}}}^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
$-6(\mathrm{e}): \overline{\overline{\mathbf{C}}}^{-1}=\frac{c}{4} \overline{\overline{\mathbf{C}}}^{T}$
$-7(\mathrm{~b}):\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
$-7(\mathrm{c}): \overline{\bar{R}}_{3}^{c}=\left(\left[\begin{array}{rrr}-2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2\end{array}\right]\right)^{-1}\left[\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}-2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2\end{array}\right]=\frac{1}{9}\left[\begin{array}{rrr}4 & -4 & 7 \\ 8 & 1 & -4 \\ 1 & 8 & 4\end{array}\right]$
- Assignment:

1. Prove that $\overline{\bar{E}}$ is an elementary matrix if and only if $\overline{\bar{E}}^{t}$ is.
2. Find the rank of the following matrices:

$$
\text { (a) }\left(\begin{array}{rrr}
1 & 0 & 2 \tag{1}\\
1 & 1 & 4
\end{array}\right) \quad(b)\left(\begin{array}{rrrrr}
1 & 2 & 0 & 1 & 1 \\
2 & 4 & 1 & 3 & 0 \\
3 & 6 & 2 & 5 & 1 \\
-4 & -8 & 1 & -3 & 1
\end{array}\right)
$$

From Scratch !!

- Definition: the dual space of \mathcal{V} is the vector space $\mathcal{L}(\mathcal{V}, F)$, denoted by \mathcal{V}^{*}.
- Theorem 2.24: Let $\beta=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ be the ordered basis of \mathcal{V}, and we can find $\beta^{*}=\left\{\vec{f}_{1}, \overrightarrow{f_{2}}, \ldots, \vec{f}_{n}\right\}$ as an ordered basis for \mathcal{V}^{*}, for any $f \in \mathcal{V}^{*}$, we have

$$
\begin{equation*}
f=\sum_{i=1}^{n} f\left(\vec{x}_{i}\right) f_{i} . \tag{2}
\end{equation*}
$$

- Definition: the ordered bases $\beta^{*}=\left\{\vec{f}_{1}, \vec{f}_{2}, \ldots, \vec{f}_{n}\right\}$ of \mathcal{V}^{*} that satisfies $f_{i}\left(\vec{x}_{j}\right)=\delta_{i j}$ is called the dual basis of β.
- Theorem 2.25: for any linear transformation $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$, the mapping $\hat{T}^{t}: \mathcal{W}^{*} \rightarrow \mathcal{V}^{*}$ definted by $\hat{T}^{t}(g)=g \hat{T}$ for all $g \in \mathcal{W}^{*}$ is a linear transformation with the property hat

$$
\begin{equation*}
\left[\hat{T}^{t}\right]_{\gamma^{*}}^{\beta^{*}}=\left([\hat{T}]_{\beta}^{\gamma}\right)^{t} \tag{3}
\end{equation*}
$$

- Definition: for a $\vec{x} \in \mathcal{V}$, the linear functional on \mathcal{V}^{*} is defined as $\hat{x}: \mathcal{V}^{*} \rightarrow F$ by $\hat{x}=f(x)$.
- Lemma: If $\hat{x}(f)=0$ for all $f \in \mathcal{V}^{*}$, then $\vec{x}=0$.
- Theorem 2.26: $\psi: \mathcal{V} \rightarrow \mathcal{V}^{* *}$ by $\psi(\vec{x})=\hat{x}$ is an isomorphism.
- Corollary: every ordered basis for \mathcal{V}^{*} is the dual basis for some basis for \mathcal{V}.
- Section 2.7: Homogeneous Linear Differential Equations with constant coefficients
- Definition: Elementary row [column] operations:
- Type 1,2 , and 3 elementary matrix: $\overline{\bar{P}}, \overline{\bar{D}}$, and $\overline{\bar{E}}$
- Theorem 3.1: There exists an $m \times m(n \times n)$ elementary matrix $\overline{\bar{E}}$, such that $\overline{\bar{B}}=\overline{\overline{E A}}_{m \times n}\left(\right.$ or $\left.\overline{\bar{B}}=\overline{\bar{A}}_{m \times n} \overline{\bar{E}}\right)$
- Theorem 3.2: Elementary matrices are invertible, and the inverse oof an elementary matrix is an elementary matrix of the same type.
- Definition: If $\overline{\bar{A}} \in \overline{\bar{M}}_{m \times n}(F)$, the rank of $\overline{\bar{A}}$, denoted $\operatorname{rank}(\overline{\bar{A}})$, is the rank of the linear transformation $\hat{L}_{A}: F^{n} \rightarrow F^{m}$.
- Corollary of Theorem 2.18: an $n \times n$ matrix is invertible if and only if its rank is n.
- Theorem 3.3: $\operatorname{rank}(\hat{T})=\operatorname{rank}\left([\hat{T}]_{\beta}^{\gamma}\right)$
- Theorem 3.4: If $\overline{\bar{P}}_{m \times m}$ and $\overline{\bar{Q}}_{n \times n}$ are invertible matrices, then

1. $\operatorname{rank}\left(\overline{\bar{A}}_{m \times n} \overline{\bar{Q}}\right)=\operatorname{rank}(\overline{\bar{A}})$,
2. $\operatorname{rank}\left(\overline{\overline{P A}}_{m \times n}\right)=\operatorname{rank}(\overline{\bar{A}})$,
3. $\operatorname{rank}\left(\overline{\overline{P A}}_{m \times n} \overline{\bar{Q}}\right)=\operatorname{rank}(\overline{\bar{A}})$,

- Corollary: Elementary row and column opeartion on a matrix are rank-preserving.
- Theorem 3.5: The rank of any matrix equals the maximum number of its linearly independent columns;
- Theorem 3.5: The rank of a matrix is the dimension of the subspace generated by its columns.
- Theorem 3.6: Let $\overline{\bar{A}}_{m \times n}$ has the rank r. Then $r \leq m, r \leq n$, and $\overline{\bar{A}}$ can be transformed into

$$
\overline{\bar{D}}=\left(\begin{array}{cc}
\overline{\bar{I}}_{r} & \overline{\bar{O}}_{1} \tag{4}\\
\overline{\bar{O}}_{2} & \overline{\bar{O}}_{3}
\end{array}\right)
$$

- Corollay 2: $\operatorname{rank}\left(\overline{\bar{A}}^{t}\right)=\operatorname{rank}(\overline{\bar{A}})$

