Linear Algebra, EE 10810/EECS 205004

Note 2.6 - 3.2

Ray-Kuang Lee¹ ¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• 2nd Exam on Dec. xxth, (10:10AM - 1:00 PM, Friday), covering Chap. 2.6, Chap. 3, Chap. 4, Chap 5.

• Solutions for 1st Exam:

 $\begin{array}{l} -1(c): \mbox{ Not possible.} \\ -2(a): \{1\} \\ -2(b): \{R\}, R > 0 \& R \neq 1; \mbox{ any positive real number, but not 1.} \\ -2(c): \mbox{ dim}(\mathcal{V}) = 1 \\ -3: (\hat{I} - \hat{T})^{-1} = \hat{I} + \hat{T} + \hat{T}^2 \\ -4(b): R(\hat{T}) = \mbox{span} \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\} \\ -4(c): N(\hat{T}) = \mbox{span} \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\} \\ -6(b): \ d = \frac{c}{2} \\ -6(c): \ \bar{\mathbf{B}}^{-1} = \frac{1}{50} \begin{bmatrix} 4 & -3 & -4 & 3 \\ 3 & 4 & -3 & -4 \\ 4 & -3 & 4 & -3 \\ 4 & 4 & 3 & 4 \end{bmatrix} \\ -6(d): \ \bar{\mathbf{B}}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \\ -6(e): \ \bar{\mathbf{C}}^{-1} = \frac{c}{4} \bar{\mathbf{C}}^T \\ -7(b): \ \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ -7(c): \ \overline{R}_{3}^{c} = \left(\begin{bmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 4 & -4 & 7 \\ 8 & 1 & -4 \\ 1 & 8 & 4 \end{bmatrix}$

• Assignment:

- 1. Prove that $\overline{\overline{E}}$ is an elementary matrix if and only if $\overline{\overline{E}}^t$ is.
- 2. Find the rank of the following matrices:

$$(a) \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 2 & 4 & 1 & 3 & 0 \\ 3 & 6 & 2 & 5 & 1 \\ -4 & -8 & 1 & -3 & 1 \end{pmatrix}$$
(1)

From Scratch !!

- Definition: the **dual space** of \mathcal{V} is the vector space $\mathcal{L}(\mathcal{V}, F)$, denoted by \mathcal{V}^* .
- Theorem 2.24: Let $\beta = {\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}}$ be the ordered basis of \mathcal{V} , and we can find $\beta^* = {\vec{f_1}, \vec{f_2}, \dots, \vec{f_n}}$ as an ordered basis for \mathcal{V}^* , for any $f \in \mathcal{V}^*$, we have

$$f = \sum_{i=1}^{n} f(\vec{x}_i) f_i.$$
 (2)

- Definition: the ordered bases $\beta^* = \{\vec{f_1}, \vec{f_2}, \dots, \vec{f_n}\}$ of \mathcal{V}^* that satisfies $f_i(\vec{x_j}) = \delta_{ij}$ is called the **dual basis** of β .
- Theorem 2.25: for any linear transformation $\hat{T}: \mathcal{V} \to \mathcal{W}$, the mapping $\hat{T}^t: \mathcal{W}^* \to \mathcal{V}^*$ defined by $\hat{T}^t(g) = g\hat{T}$ for all $g \in \mathcal{W}^*$ is a linear transformation with the property hat

$$[\hat{T}^{t}]_{\gamma^{*}}^{\beta^{*}} = ([\hat{T}]_{\beta}^{\gamma})^{t}$$
(3)

- Definition: for a $\vec{x} \in \mathcal{V}$, the **linear functional** on \mathcal{V}^* is defined as $\hat{x}: \mathcal{V}^* \to F$ by $\hat{x} = f(x)$.
- Lemma: If $\hat{x}(f) = 0$ for all $f \in \mathcal{V}^*$, then $\vec{x} = 0$.
- Theorem 2.26: $\psi: \mathcal{V} \to \mathcal{V}^{**}$ by $\psi(\vec{x}) = \hat{x}$ is an isomorphism.
- Corollary: every ordered basis for \mathcal{V}^* is the dual basis for some basis for \mathcal{V} .
- Section 2.7: Homogeneous Linear Differential Equations with constant coefficients
- Definition: Elementary row [column] operations:
- Type 1, 2, and 3 elementary matrix: $\overline{\overline{P}}$, $\overline{\overline{D}}$, and $\overline{\overline{E}}$
- Theorem 3.1: There exists an $m \times m$ $(n \times n)$ elementary matrix $\overline{\overline{E}}$, such that $\overline{\overline{B}} = \overline{\overline{EA}}_{m \times n}$ (or $\overline{\overline{B}} = \overline{\overline{A}}_{m \times n}\overline{\overline{E}}$)
- Theorem 3.2: Elementary matrices are invertible, and the inverse oof an elementary matrix is an elementary matrix of the same type.
- Definition: If $\overline{\overline{A}} \in \overline{\overline{M}}_{m \times n}(F)$, the **rank** of $\overline{\overline{A}}$, denoted $rank(\overline{\overline{A}})$, is the rank of the linear transformation $\hat{L}_A : F^n \to F^m$.
- Corollary of Theorem 2.18: an $n \times n$ matrix is invertible if and only if its rank is n.
- Theorem 3.3: $rank(\hat{T}) = rank([\hat{T}]^{\gamma}_{\beta})$
- Theorem 3.4: If $\overline{\overline{P}}_{m \times m}$ and $\overline{\overline{Q}}_{n \times n}$ are invertible matrices, then
 - 1. $rank(\overline{\overline{A}}_{m \times n}\overline{\overline{Q}}) = rank(\overline{\overline{A}}),$
 - 2. $rank(\overline{\overline{PA}}_{m \times n}) = rank(\overline{\overline{A}}),$
 - 3. $rank(\overline{\overline{PA}}_{m \times n}\overline{\overline{Q}}) = rank(\overline{\overline{A}}),$
- Corollary: Elementary row and column opeartion on a matrix are *rank-preserving*.
- Theorem 3.5: The rank of any matrix equals the maximum number of its linearly independent columns;
- Theorem 3.5: The rank of a matrix is the dimension of the subspace generated by its columns.
- Theorem 3.6: Let $\overline{\overline{A}}_{m \times n}$ has the rank r. Then $r \leq m, r \leq n$, and $\overline{\overline{A}}$ can be transformed into

$$\overline{\overline{D}} = \begin{pmatrix} \overline{\overline{I}}_r & \overline{\overline{O}}_1 \\ \overline{\overline{O}}_2 & \overline{\overline{O}}_3 \end{pmatrix}$$
(4)

• Corollay 2: $rank(\overline{\overline{A}}^t) = rank(\overline{\overline{A}})$