Linear Algebra, EE 10810/EECS 205004

Note 3.2-3.4

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan.
Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Next Quiz on Nov. 13th, Friday.
- Assignment:

1. Express the following invertible matrix, as a product of elementary matrices:

$$
\left(\begin{array}{lll}
1 & 2 & 1 \tag{1}\\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

2. Let $\overline{\bar{A}}$ be an $m \times n$ matrix with $r a n k m$ and $\overline{\bar{B}}$ be an $n \times p$ matrix with $r a n k n$. Determine the rank of $\overline{\overline{A B}}$.
3. Determine which of the following systems of linear equations has solution(s), and if yes, find the solution(s).
(a)

$$
\begin{array}{r}
x_{1}+x_{2}+3 x_{3}-x_{4}=0 \\
x_{1}+x_{2}+x_{3}+x_{4}=1 \\
x_{1}-2 x_{2}+x_{3}-x_{4}=1 \tag{2}\\
4 x_{1}+x_{2}+8 x_{3}-x_{4}=0
\end{array}
$$

(b)

$$
\begin{align*}
3 x_{1}-x_{2}+x_{3}-x_{4}+2 x_{5}= & 5 \\
x_{1}-x_{2}-x_{3}-2 x_{4}-x_{5}= & 2 \\
5 x_{1}-2 x_{2}+x_{3}-3 x_{4}+3 x_{5}= & 10 \tag{3}\\
2 x_{1}-x_{2} & -2 x_{4}+x_{5}=
\end{align*}
$$

From Scratch !!

- Section 3.1-3.2
- Theorem 3.1: There exists an $m \times m(n \times n)$ elementary matrix $\overline{\bar{E}}$, such that $\overline{\bar{B}}=\overline{\overline{E A}}_{m \times n}\left(\right.$ or $\overline{\bar{B}}=\overline{\bar{A}}_{m \times n} \overline{\bar{E}}$)
- Theorem 3.2: Elementary matrices are invertible, and the inverse oof an elementary matrix is an elementary matrix of the same type.
- Definition: If $\overline{\bar{A}} \in \overline{\bar{M}}_{m \times n}(F)$, the rank of $\overline{\bar{A}}$, denoted $\operatorname{rank}(\overline{\bar{A}})$, is the rank of the linear transformation $\hat{L}_{A}: F^{n} \rightarrow F^{m}$.
- Corollary of Theorem 2.18: an $n \times n$ matrix is invertible if and only if its rank is n.
- Theorem 3.3: $\operatorname{rank}(\hat{T})=\operatorname{rank}\left([\hat{T}]_{\beta}^{\gamma}\right)$
- Theorem 3.4: If $\overline{\bar{P}}_{m \times m}$ and $\overline{\bar{Q}}_{n \times n}$ are invertible matrices, then

1. $\operatorname{rank}\left(\overline{\bar{A}}_{m \times n} \overline{\bar{Q}}\right)=\operatorname{rank}(\overline{\bar{A}})$,
2. $\operatorname{rank}\left(\overline{\overline{P A}}_{m \times n}\right)=\operatorname{rank}(\overline{\bar{A}})$,
3. $\operatorname{rank}\left(\overline{\overline{P A}}_{m \times n} \overline{\bar{Q}}\right)=\operatorname{rank}(\overline{\bar{A}})$,

- Corollary: Elementary row and column operation on a matrix are rank-preserving.
- Theorem 3.5: The rank of any matrix equals the maximum number of its linearly independent columns;
- Theorem 3.5: The rank of a matrix is the dimension of the subspace generated by its columns.
- Theorem 3.6: Let $\overline{\bar{A}}_{m \times n}$ has the rank r. Then $r \leq m, r \leq n$, and $\overline{\bar{A}}$ can be transformed into

$$
\overline{\bar{D}}=\left(\begin{array}{c}
\overline{\bar{I}}_{r} \tag{4}\\
\overline{\bar{O}}_{2} \\
\overline{\bar{O}}_{1} \\
\overline{\bar{O}}_{3}
\end{array}\right)
$$

- Corollary 2: $\operatorname{rank}\left(\overline{\bar{A}}^{t}\right)=\operatorname{rank}(\overline{\bar{A}})$
- Corollary 3: Every invertible matrix is a product of elementary matrices.
- Theorem 3.7: Let $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$ and $\hat{U}: \mathcal{W} \rightarrow \mathcal{Z}$ be linear transformation:

1. $\operatorname{rank}(\hat{U} \hat{T}) \leq \operatorname{rank}(\hat{U})$
2. $\operatorname{rank}(\hat{U} \hat{T}) \leq \operatorname{rank}(\hat{T})$
3. $\operatorname{rank}(\overline{\overline{A B}}) \leq \operatorname{rank}(\overline{\bar{A}}) ; \quad \quad \operatorname{rank}(\overline{\overline{A B}}) \leq \operatorname{rank}(\overline{\bar{B}})$

- Augmented Matrix:
- Section 3.3
- Systems of Linear Equations: $\overline{\bar{A}} \vec{x}=\vec{b}$
- the solution set S is called consistent if its solution set is non-empty.
- Definition: Homogeneous if $\vec{b}=\overrightarrow{0}$.
- Theorem 3.8: Let K denote the set of all solutions to $\overline{\bar{A}} \vec{x}=\overrightarrow{0}$. Then, $K=N\left(\hat{L}_{A}\right)$, a subspace of F^{n} of dimension $n-\operatorname{rank}(\overline{\bar{A}})$
- Theorem 3.9: Let K_{H} be the solution set of the homogenous system $\overline{\bar{A}} \vec{x}=\overrightarrow{0}$, then for any solution s to $\overline{\bar{A}} \vec{x}=\vec{b}$

$$
\begin{equation*}
K=\{s\}+K_{H}=\left\{s+k: k \in K_{H}\right\} \tag{5}
\end{equation*}
$$

- Theorem 3.10: If $\overline{\bar{A}}_{n \times n} \vec{x}=\vec{b}$ is invertible, then the system has exactly one solution.
- Theorem 3.11: The system is consistent iff $\operatorname{rank}(\overline{\bar{A}})=\operatorname{rank}(\overline{\bar{A}} \mid \vec{b})$.

- Section 3.4

- Definition: equivalent
- Theorem 3.13: $\overline{\bar{A}}_{m \times n} \vec{x}=\vec{b}$ is equivalent to $\left(\overline{\bar{C}}_{m \times m} \overline{\bar{A}}_{m \times n}\right) \vec{x}=\overline{\bar{C}}_{m \times m} \vec{b}$ with an invertible matrix $\overline{\bar{C}}_{m \times m}$.
- Definition: Reduced Row Echelon form
- Theorem 3.14: Gaussian elimination transforms any matrix into its reduced row echelon form.
- Theorem 3.15: $\operatorname{rank}(\overline{\bar{A}})=\operatorname{rank}(\overline{\bar{A}} \mid \vec{b})$ and the general solution has the form

$$
\begin{equation*}
s=s_{0}+t_{1} u_{1}+t_{2} u_{2}+\ldots+t_{n-r} u_{n-r} \tag{6}
\end{equation*}
$$

where $\operatorname{rank}(\overline{\bar{A}})=r,\left\{u_{1}, u_{2}, \ldots, u_{n-r}\right\}$ is a basis for the solution set of the corresponding homogeneous system, and s_{0} is a solution to the original system.

- Theorem 3.16: The reduced row echelon form of a matrix is unique.

