Linear Algebra, EE 10810/EECS 205004

Note 3.2 – 3.4

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Next Quiz on Nov. 13th, Friday.

• Assignment:

1. Express the following invertible matrix, as a product of elementary matrices:

$(1 \ 2 \ 1)$	
$(1 \ 0 \ 1)$	(1)
$ \left(\begin{array}{rrrr} 1 & 2 & 1\\ 1 & 0 & 1\\ 1 & 1 & 2 \end{array}\right) $	

- 2. Let $\overline{\overline{A}}$ be an $m \times n$ matrix with rank m and $\overline{\overline{B}}$ be an $n \times p$ matrix with rank n. Determine the rank of $\overline{\overline{AB}}$.
- 3. Determine which of the following systems of linear equations has solution(s), and if yes, find the solution(s).(a)

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	x_1	+	x_2	+	$3x_3$	_	x_4	=	0
	x_1	+	x_2	+	x_3	$^+$	x_4	=	1
$4x_1 + x_2 + 8x_3 - x_4 = 0$	x_1	_	$2x_2$	+	x_3	_	x_4	=	1
	$4x_1$	+	x_2	+	$8x_3$	_	x_4	=	0

(b)

$$3x_{1} - x_{2} + x_{3} - x_{4} + 2x_{5} = 5$$

$$x_{1} - x_{2} - x_{3} - 2x_{4} - x_{5} = 2$$

$$5x_{1} - 2x_{2} + x_{3} - 3x_{4} + 3x_{5} = 10$$

$$2x_{1} - x_{2} - 2x_{4} + x_{5} = 5$$
(3)

From Scratch !!

- Section 3.1-3.2
- Theorem 3.1: There exists an $m \times m$ $(n \times n)$ elementary matrix $\overline{\overline{E}}$, such that $\overline{\overline{B}} = \overline{\overline{EA}}_{m \times n}$ (or $\overline{\overline{B}} = \overline{\overline{A}}_{m \times n} \overline{\overline{E}}$)
- Theorem 3.2: Elementary matrices are invertible, and the inverse oof an elementary matrix is an elementary matrix of the same type.
- Definition: If $\overline{A} \in \overline{M}_{m \times n}(F)$, the **rank** of \overline{A} , denoted $rank(\overline{A})$, is the rank of the linear transformation $\hat{L}_A : F^n \to F^m$.
- Corollary of Theorem 2.18: an $n \times n$ matrix is invertible if and only if its rank is n.
- Theorem 3.3: $rank(\hat{T}) = rank([\hat{T}]^{\gamma}_{\beta})$
- Theorem 3.4: If $\overline{\overline{P}}_{m \times m}$ and $\overline{\overline{Q}}_{n \times n}$ are invertible matrices, then

1.
$$rank(\overline{A}_{m \times n}\overline{Q}) = rank(\overline{A})$$

- 2. $rank(\overline{\overline{PA}}_{m \times n}) = rank(\overline{\overline{A}}),$
- 3. $rank(\overline{\overline{PA}}_{m \times n}\overline{\overline{Q}}) = rank(\overline{\overline{A}}),$
- Corollary: Elementary row and column operation on a matrix are *rank-preserving*.
- Theorem 3.5: The rank of any matrix equals the maximum number of its linearly independent columns;
- Theorem 3.5: The rank of a matrix is the dimension of the subspace generated by its columns.
- Theorem 3.6: Let $\overline{\overline{A}}_{m \times n}$ has the rank r. Then $r \leq m, r \leq n$, and $\overline{\overline{A}}$ can be transformed into

$$\overline{\overline{D}} = \begin{pmatrix} \overline{\overline{I}}_r & \overline{\overline{O}}_1 \\ \overline{\overline{O}}_2 & \overline{\overline{O}}_3 \end{pmatrix}$$
(4)

- Corollary 2: $rank(\overline{\overline{A}}^t) = rank(\overline{\overline{A}})$
- Corollary 3: Every invertible matrix is a product of elementary matrices.
- Theorem 3.7: Let $\hat{T}: \mathcal{V} \to \mathcal{W}$ and $\hat{U}: \mathcal{W} \to \mathcal{Z}$ be linear transformation:
 - 1. $rank(\hat{U}\hat{T}) \leq rank(\hat{U})$
 - 2. $rank(\hat{U}\hat{T}) \leq rank(\hat{T})$
 - 3. $rank(\overline{\overline{AB}}) \le rank(\overline{\overline{A}});$ $rank(\overline{\overline{AB}}) \le rank(\overline{\overline{B}})$
- Augmented Matrix:
- Section 3.3
- Systems of Linear Equations: $\overline{A}\,\vec{x}=\vec{b}$
- the solution set S is called *consistent* if its solution set is *non-empty*.
- Definition: Homogeneous if $\vec{b} = \vec{0}$.
- Theorem 3.8: Let K denote the set of all solutions to $\overline{\overline{A}} \vec{x} = \vec{0}$. Then, $K = N(\hat{L}_A)$, a subspace of F^n of dimension $n rank(\overline{\overline{A}})$
- Theorem 3.9: Let K_H be the solution set of the homogenous system $\overline{\overline{A}} \vec{x} = \vec{0}$, then for any solution s to $\overline{\overline{A}} \vec{x} = \vec{b}$

$$K = \{s\} + K_H = \{s + k : k \in K_H\}$$
(5)

- Theorem 3.10: If $\overline{\overline{A}}_{n \times n} \vec{x} = \vec{b}$ is invertible, then the system has exactly one solution.
- Theorem 3.11: The system is consistent iff $rank(\overline{A}) = rank(\overline{A}|\vec{b})$.
- Section 3.4
- Definition: equivalent
- Theorem 3.13: $\overline{\overline{A}}_{m \times n} \vec{x} = \vec{b}$ is equivalent to $(\overline{\overline{C}}_{m \times m} \overline{\overline{A}}_{m \times n}) \vec{x} = \overline{\overline{C}}_{m \times m} \vec{b}$ with an invertible matrix $\overline{\overline{C}}_{m \times m}$.
- Definition: Reduced Row Echelon form
- Theorem 3.14: Gaussian elimination transforms any matrix into its reduced row echelon form.
- Theorem 3.15: $rank(\overline{A}) = rank(\overline{A}|\vec{b})$ and the general solution has the form

where $rank(\overline{\overline{A}}) = r$, $\{u_1, u_2, \ldots, u_{n-r}\}$ is a basis for the solution set of the corresponding homogeneous system, and s_0 is a solution to the original system.

 $s = s_0 + t_1 u_1 + t_2 u_2 + \ldots + t_{n-r} u_{n-r},$

• Theorem 3.16: The reduced row echelon form of a matrix is *unique*.

(6)