Linear Algebra, EE 10810/EECS 205004

Note 4.4 - 5.1

Ray-Kuang Lee^1

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Next Quiz on Dec. 2nd, Wednesday.

• Assignment:

1. Use Cramer's rule with ratios $det(\overline{\overline{B}}_i)/det(\overline{\overline{A}})$ to solve $\overline{\overline{A}} \vec{x} = \vec{b}$. Also find the inverse matrix $(\overline{\overline{A}})^{-1} = \overline{\overline{C}}^t/det(\overline{\overline{A}})$.

$$\overline{\overline{A}} \, \vec{x} = \vec{b} \qquad \text{is} \qquad \begin{pmatrix} 2 & 6 & 2 \\ 1 & 4 & 2 \\ 5 & 9 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{1}$$

- 2. A box has edges from (0,0,0) to (3,1,1) and (1,3,1) and (1,1,3). Find its volume and the area of each parallelogram face using $|\vec{u} \times \vec{v}|$.
- 3. For the matrix

$$\overline{\overline{A}} = \begin{pmatrix} 0 & -2 & -3\\ -1 & 1 & -1\\ 2 & 2 & 5 \end{pmatrix}$$
(2)

- (a) Determine all the eigenvalues of $\overline{\overline{A}}$.
- (b) For each eigenvalues λ of $\overline{\overline{A}}$, find the set of eigenvectors corresponding to λ .
- (c) If possible, find a basis for R^3 consisting of eigenvectors of $\overline{\overline{A}}$.
- (d) If successful in finding such a basis, determine an invertible matrix $\overline{\overline{Q}}$ and a diagonal matrix $\overline{\overline{D}}$ such that $\overline{\overline{Q}}^{-1}\overline{\overline{AQ}} = \overline{\overline{D}}$.

From Scratch !!

• Cramer's Rule for solving $\overline{\overline{A}} \vec{x} = \vec{b}$:

$$x_i = \frac{\det(\overline{\overline{B}}_i)}{\det(\overline{\overline{A}})},\tag{3}$$

where the matrix $\overline{\overline{B}}_i$ has the *j*-th column of $\overline{\overline{A}}$ replaced by the vector \vec{b} .

• Cramer's Rule for finding the inverse of the matrix $\overline{\overline{A}}$:

$$(\overline{\overline{A}})_{ij}^{-1} = \frac{\overline{\overline{C}}_{ji}}{det(\overline{\overline{A}})},\tag{4}$$

where $\overline{\overline{C}}$ is the cofactor matrix for $\overline{\overline{A}}$.

- Area of triangle: $\frac{1}{2} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$
- Volume of box: $\left| det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} \right|$
- Cross product: $\vec{u} \times \vec{v} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$
- Triple product: $(\vec{u} \times \vec{v}) \cdot \vec{w} = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$
- *n*-dimensional volume: $\left| det(\overline{\overline{A}}_{n \times n}) \right|$
- Section 5.1: Eigenvalues and Eigenvectors

$$\hat{T}(\vec{v}) = \lambda \vec{v} \quad \text{or} \quad \overline{A} \vec{v} = \lambda \vec{v}$$
(5)

- Definition: Diagonalizable
- Theorem 5.1: \hat{T} is diagonalizable iff there exists an ordered basis β for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Theorem 5.2: The scalar λ is an eigenvalue of $\overline{\overline{A}}$ iff $det(\overline{\overline{A}} \lambda \overline{\overline{I}}_n) = 0$.
- Definition: characteristic polynomial of $\overline{\overline{A}}$:

$$f(t) = det(\overline{A} - t\overline{I}_n) \tag{6}$$

- $\bullet\,$ Theorem 5.3:
 - 1. The characteristic polynomial of $\overline{\overline{A}}$ is a polynomial of degree n with leading coefficient $(-1)^n$.
 - 2. $\overline{\overline{A}}$ has at most *n* distinct eigenvalues.
- Theorem 5.4: A vector $\vec{v} \in \mathcal{V}$ is an eigenvector of \hat{T} corresponding to λ iff $\vec{v} \neq 0$ and $\vec{v} \in N(\hat{T} \lambda \overline{\bar{T}})$.