Linear Algebra, EE 10810/EECS 205004

Note 4.4-5.1

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Next Quiz on Dec. 2nd, Wednesday.
- Assignment:

1. Use Cramer's rule with ratios $\operatorname{det}\left(\overline{\bar{B}}_{i}\right) / \operatorname{det}(\overline{\bar{A}})$ to solve $\overline{\bar{A}} \vec{x}=\vec{b}$. Also find the inverse matrix $(\overline{\bar{A}})^{-1}=\overline{\bar{C}}^{t} / \operatorname{det}(\overline{\bar{A}})$.

$$
\overline{\bar{A}} \vec{x}=\vec{b} \quad \text { is } \quad\left(\begin{array}{ccc}
2 & 6 & 2 \tag{1}\\
1 & 4 & 2 \\
5 & 9 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

2. A box has edges from $(0,0,0)$ to $(3,1,1)$ and $(1,3,1)$ and $(1,1,3)$. Find its volume and the area of each parallelogram face using $|\vec{u} \times \vec{v}|$.
3. For the matrix

$$
\overline{\bar{A}}=\left(\begin{array}{rrr}
0 & -2 & -3 \tag{2}\\
-1 & 1 & -1 \\
2 & 2 & 5
\end{array}\right)
$$

(a) Determine all the eigenvalues of $\overline{\bar{A}}$.
(b) For each eigenvalues λ of $\overline{\bar{A}}$, find the set of eigenvectors corresponding to λ.
(c) If possible, find a basis for R^{3} consisting of eigenvectors of $\overline{\bar{A}}$.
(d) If successful in finding such a basis, determine an invertible matrix $\overline{\bar{Q}}$ and a diagonal matrix $\overline{\bar{D}}$ such that $\overline{\bar{Q}}^{-1} \overline{\overline{A Q}}=\overline{\bar{D}}$.

From Scratch !!

- Cramer's Rule for solving $\overline{\bar{A}} \vec{x}=\vec{b}$:

$$
\begin{equation*}
x_{i}=\frac{\operatorname{det}\left(\overline{\bar{B}}_{i}\right)}{\operatorname{det}(\overline{\bar{A}})} \tag{3}
\end{equation*}
$$

where the matrix $\overline{\bar{B}}_{i}$ has the j-th column of $\overline{\bar{A}}$ replaced by the vector \vec{b}.

- Cramer's Rule for finding the inverse of the matrix $\overline{\bar{A}}$:

$$
\begin{equation*}
(\overline{\bar{A}})_{i j}^{-1}=\frac{\overline{\bar{C}}_{j i}}{\operatorname{det}(\overline{\bar{A}})}, \tag{4}
\end{equation*}
$$

where $\overline{\bar{C}}$ is the cofactor matrix for $\overline{\bar{A}}$.

- Area of triangle: $\frac{1}{2}\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|$
- Volume of box: $\left|\operatorname{det}\left(\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right)\right|$
- Cross product: $\vec{u} \times \vec{v}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- Triple product: $(\vec{u} \times \vec{v}) \cdot \vec{w}=\left|\begin{array}{lll}w_{1} & w_{2} & w_{3} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- n-dimensional volume: $\left|\operatorname{det}\left(\overline{\bar{A}}_{n \times n}\right)\right|$
- Section 5.1: Eigenvalues and Eigenvectors

$$
\begin{equation*}
\hat{T}(\vec{v})=\lambda \vec{v} \quad \text { or } \quad \overline{\bar{A}} \vec{v}=\lambda \vec{v} \tag{5}
\end{equation*}
$$

- Definition: Diagonalizable
- Theorem 5.1: \hat{T} is diagonalizable iff there exists an ordered basis β for \mathcal{V} consisting of eigenvectors of \hat{T}.
- Theorem 5.2: The scalar λ is an eigenvalue of $\overline{\bar{A}}$ iff $\operatorname{det}\left(\overline{\bar{A}}-\lambda \overline{\bar{I}}_{n}\right)=0$.
- Definition: characteristic polynomial of $\overline{\bar{A}}$:

$$
\begin{equation*}
f(t)=\operatorname{det}\left(\overline{\bar{A}}-t \overline{\bar{I}}_{n}\right) \tag{6}
\end{equation*}
$$

- Theorem 5.3:

1. The characteristic polynomial of $\overline{\bar{A}}$ is a polynomial of degree n with leading coefficient $(-1)^{n}$.
2. $\overline{\bar{A}}$ has at most n distinct eigenvalues.

- Theorem 5.4: A vector $\vec{v} \in \mathcal{V}$ is an eigenvector of \hat{T} corresponding to λ iff $\vec{v} \neq 0$ and $\vec{v} \in N(\hat{T}-\lambda \overline{\bar{I}})$.

