Linear Algebra, EE 10810/EECS 205004

Note 5.2-5.3

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw

(Dated: Fall, 2020)

- Next Quiz on Dec. 2nd, Wednesday.
- Assignment:

1. Prove Theorem 5.5: Let \hat{T} be. a linear operator on a vector space \mathcal{V}, and let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ be distinct eigenvalues of \hat{T}. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ are the corresponding eigenvectors of \hat{T}, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.
2. For the following linear operators \hat{T} on a vector space \mathcal{V}, test \hat{T} for diagonalizability, and if \hat{T} is diagonalizable, find a basis β for \mathcal{V} such that $[\hat{T}]_{\beta}$ is a diagonal matrix:
(a) $\mathcal{V}=P_{3}(\mathcal{R})$ and \hat{T} is defined by $\hat{T}(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$, respectively.
(b) $\mathcal{V}=\mathcal{R}^{3}$ and \hat{T} is defined by

$$
\hat{T}\left(\begin{array}{l}
a_{1} \tag{1}\\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{r}
a_{2} \\
-a_{2} \\
2 a_{3}
\end{array}\right)
$$

3. Let $\overline{\bar{A}}$ be a $n \times n$ matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ with corresponding multiplicities $m_{1}, m_{2}, \ldots, m_{k}$. Prove that
(a) $\operatorname{tr}(\overline{\bar{A}})=\sum_{i=1}^{k} m_{i} \lambda_{i}$
(b) $\operatorname{det}(\overline{\bar{A}})=\left(\lambda_{1}\right)^{m_{1}}\left(\lambda_{2}\right)^{m_{2}} \ldots\left(\lambda_{k}\right)^{m_{k}}$

From Scratch !!

- Section 5.1: Eigenvalues and Eigenvectors

$$
\begin{equation*}
\hat{T}(\vec{v})=\lambda \vec{v} \quad \text { or } \quad \overline{\bar{A}} \vec{v}=\lambda \vec{v} \tag{2}
\end{equation*}
$$

- Definition: Diagonalizable
- Theorem 5.1: \hat{T} is diagonalizable iff there exists an ordered basis β for \mathcal{V} consisting of eigenvectors of \hat{T}.
- Theorem 5.2: The scalar λ is an eigenvalue of $\overline{\bar{A}}$ iff $\operatorname{det}\left(\overline{\bar{A}}-\lambda \overline{\bar{I}}_{n}\right)=0$.
- Definition: characteristic polynomial of $\overline{\bar{A}}$:

$$
\begin{equation*}
f(\lambda)=\operatorname{det}\left(\overline{\bar{A}}-\lambda \overline{\bar{I}}_{n}\right) \tag{3}
\end{equation*}
$$

- Theorem 5.3:

1. The characteristic polynomial of $\overline{\bar{A}}$ is a polynomial of degree n with leading coefficient $(-1)^{n}$.
2. $\overline{\bar{A}}$ has at most n distinct eigenvalues.

- Theorem 5.4: A vector $\vec{v} \in \mathcal{V}$ is an eigenvector of \hat{T} corresponding to λ iff $\vec{v} \neq 0$ and $\vec{v} \in N(\hat{T}-\lambda \overline{\bar{I}})$.
- Section 5.2: Diagonalizability
- Theorem 5.5: Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ be distinct eigenvalues of \hat{T}. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ are the corresponding eigenvectors of \hat{T}, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.
- Corollary: If \hat{T} has n distinct eigenvalues, then \hat{T} is diagonalizable.
- Theorem 5.6: The characteristic polynomial of any diagonalizable linear operator splits.
- Definition: The (algebra) multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$.
- Definition: The set $E_{\lambda}=\{\vec{x} \in \mathcal{V}: \hat{T}(\vec{x})=\lambda \vec{x}\} \equiv N\left(\hat{T}-\lambda \hat{I}_{v}\right)$ is called the eigenspace of \hat{T} corresponding to the eigenvalue λ.
- Theorem 5.7: Let λ be an eigenvalue of \hat{T} having multiplicity m, then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.
- Theorem 5.8: Let $S_{i}, i=1,2, \ldots, k$, be a finite linearly independent subset of the eigenspace $E_{\lambda_{i}}$, then $S=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ is a linearly independent subset of \mathcal{V}.
- Theorem 5.9:

1. \hat{T} is diagonalizable iff the multiplicity of λ_{i} is equal to $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for all i.
2. If \hat{T} is diagonalizable and β_{i} is an ordered basis for $E_{\lambda_{i}}$, for each i, then $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$ is an ordered basis for \mathcal{V} consisting of eigenvectors of \hat{T}.

- Test of Diagonalization:
- Direct Sum
- Section 5.3: Matrix limits
- Definition: The sequence $\left\{\overline{\bar{A}}_{1}, \overline{\bar{A}}_{2}, \ldots\right\}$ is said to be converge to the matrix $\overline{\bar{L}}$, called the limit of the sequence, if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\overline{\bar{A}}_{m}\right)_{i j}=\overline{\bar{L}}_{i j} \tag{4}
\end{equation*}
$$

- Theorem 5.12: For any $\overline{\bar{P}}$ and $\overline{\bar{Q}}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \overline{\bar{P}} \overline{\bar{A}}_{m}=\overline{\overline{P L}} \quad \text { and } \quad \lim _{m \rightarrow \infty} \overline{\bar{A}}_{m} \overline{\bar{Q}}=\overline{\overline{L Q}} \tag{5}
\end{equation*}
$$

- Corollary: If $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}=\overline{\bar{L}}$, then, for any invertible matrix $\overline{\bar{Q}}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\overline{\bar{Q}} \overline{\bar{A}} \overline{\bar{Q}}^{-1}\right)^{m}=\overline{\bar{Q}} \overline{\bar{L}} \overline{\bar{Q}}^{-1} \tag{6}
\end{equation*}
$$

- Theorem 5.13: $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}$ exists iff

1. Every eigenvalue of $\overline{\bar{A}}$ is contained in S.
2. If 1 is an eigenvalue of $\overline{\bar{A}}$, then the dimension of the eigenspace corresponding 1 equlas the multiplicity of 1 as an eigenvalue of $\overline{\bar{A}}$.
