Linear Algebra, EE 10810/EECS 205004

Note 5.2 - 5.3

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Next Quiz on Dec. 2nd, Wednesday.

• Assignment:

- 1. Prove Theorem 5.5: Let \hat{T} be. a linear operator on a vector space \mathcal{V} , and let $\{\lambda_1, \lambda_2, \ldots, \lambda_k\}$ be distinct eigenvalues of \hat{T} . If $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ are the corresponding eigenvectors of \hat{T} , then $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is linearly independent.
- 2. For the following linear operators \hat{T} on a vector space \mathcal{V} , test \hat{T} for diagonalizability, and if \hat{T} is diagonalizable, find a basis β for \mathcal{V} such that $[\hat{T}]_{\beta}$ is a diagonal matrix:
 - (a) $\mathcal{V} = P_3(\mathcal{R})$ and \hat{T} is defined by $\hat{T}(f(x)) = f'(x) + f''(x)$, respectively.
 - (b) $\mathcal{V} = \mathcal{R}^3$ and \hat{T} is defined by

$$\hat{T}\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix} = \begin{pmatrix}a_2\\-a_2\\2a_3\end{pmatrix} \tag{1}$$

- 3. Let $\overline{\overline{A}}$ be a $n \times n$ matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ with corresponding multiplicities m_1, m_2, \ldots, m_k . Prove that
 - (a) $\operatorname{tr}(\overline{\overline{A}}) = \sum_{i=1}^{k} m_i \lambda_i$
 - (b) $\det(\overline{\overline{A}}) = (\lambda_1)^{m_1} (\lambda_2)^{m_2} \dots (\lambda_k)^{m_k}$

From Scratch !!

• Section 5.1: Eigenvalues and Eigenvectors

$$\hat{T}(\vec{v}) = \lambda \vec{v} \quad \text{or} \quad \overline{A} \vec{v} = \lambda \vec{v}$$
(2)

- Definition: Diagonalizable
- Theorem 5.1: \hat{T} is diagonalizable iff there exists an ordered basis β for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Theorem 5.2: The scalar λ is an eigenvalue of $\overline{\overline{A}}$ iff $det(\overline{\overline{A}} \lambda \overline{\overline{I}}_n) = 0$.
- Definition: characteristic polynomial of $\overline{\overline{A}}$:

$$f(\lambda) = det(\overline{\overline{A}} - \lambda \overline{\overline{I}}_n) \tag{3}$$

- $\bullet\,$ Theorem 5.3:
 - 1. The characteristic polynomial of $\overline{\overline{A}}$ is a polynomial of degree n with leading coefficient $(-1)^n$.
 - 2. $\overline{\overline{A}}$ has at most *n* distinct eigenvalues.
- Theorem 5.4: A vector $\vec{v} \in \mathcal{V}$ is an eigenvector of \hat{T} corresponding to λ iff $\vec{v} \neq 0$ and $\vec{v} \in N(\hat{T} \lambda \overline{\bar{I}})$.
- Section 5.2: Diagonalizability
- Theorem 5.5: Let $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ be distinct eigenvalues of \hat{T} . If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ are the corresponding eigenvectors of \hat{T} , then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is linearly independent.
- Corollary: If \hat{T} has *n* distinct eigenvalues, then \hat{T} is diagonalizable.
- Theorem 5.6: The characteristic polynomial of any diagonalizable linear operator splits.
- Definition: The (algebra) multiplicity of λ is the largest positive integer k for which $(t \lambda)^k$ is a factor of f(t).
- Definition: The set $E_{\lambda} = \{\vec{x} \in \mathcal{V} : \hat{T}(\vec{x}) = \lambda \vec{x}\} \equiv N(\hat{T} \lambda \hat{I}_v)$ is called the eigenspace of \hat{T} corresponding to the eigenvalue λ .
- Theorem 5.7: Let λ be an eigenvalue of \hat{T} having multiplicity m, then $1 \leq \dim(E_{\lambda}) \leq m$.
- Theorem 5.8: Let S_i , i = 1, 2, ..., k, be a finite linearly independent subset of the eigenspace E_{λ_i} , then $S = S_1 \cup S_2 \cup ... \cup S_k$ is a linearly independent subset of \mathcal{V} .
- Theorem 5.9:
 - 1. \hat{T} is diagonalizable iff the multiplicity of λ_i is equal to $dim(E_{\lambda_i})$ for all i.
 - 2. If \hat{T} is diagonalizable and β_i is an ordered basis for E_{λ_i} , for each i, then $\beta = \beta_1 \cup \beta_2 \cup \ldots \cup \beta_k$ is an ordered basis for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Test of Diagonalization:
- Direct Sum
- Section 5.3: Matrix limits
- Definition: The sequence $\{\overline{\overline{A}}_1, \overline{\overline{A}}_2, \ldots\}$ is said to be converge to the matrix $\overline{\overline{L}}$, called the limit of the sequence, if

$$\lim_{m \to \infty} (\overline{\overline{A}}_m)_{ij} = \overline{\overline{L}}_{ij} \tag{4}$$

• Theorem 5.12: For any $\overline{\overline{P}}$ and $\overline{\overline{Q}}$,

$$\lim_{m \to \infty} \overline{\overline{P}} \,\overline{\overline{A}}_m = \overline{\overline{PL}} \quad \text{and} \quad \lim_{m \to \infty} \overline{\overline{A}}_m \,\overline{\overline{Q}} = \overline{\overline{LQ}} \tag{5}$$

• Corollary: If $\lim_{m\to\infty} \overline{\overline{A}}^m = \overline{\overline{L}}$, then, for any invertible matrix $\overline{\overline{Q}}$,

$$\lim_{m \to \infty} (\overline{\overline{Q}} \,\overline{\overline{A}} \,\overline{\overline{Q}}^{-1})^m = \overline{\overline{Q}} \,\overline{\overline{L}} \,\overline{\overline{Q}}^{-1} \tag{6}$$

- Theorem 5.13: $\lim_{m\to\infty} \overline{\overline{A}}^m$ exists iff
 - 1. Every eigenvalue of $\overline{\overline{A}}$ is contained in S.
 - 2. If 1 is an eigenvalue of $\overline{\overline{A}}$, then the dimension of the eigenspace corresponding 1 equals the multiplicity of 1 as an eigenvalue of $\overline{\overline{A}}$.