Linear Algebra, EE 10810/EECS 205004
 Note 5.3

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Next Quiz on Dec. 9th, Wednesday.
- Assignment:

1. Find the general solution to the system of differential equations:

$$
\begin{align*}
\frac{d x_{1}}{d t} & =x_{1}+x_{3} \tag{1}\\
\frac{d x_{2}}{d t} & =x_{2}+2 x_{3} \tag{2}\\
\frac{d x_{3}}{d t} & =2 x_{3} \tag{3}
\end{align*}
$$

2. Determine whether $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}$ exists, and compute the limit if it exists.

$$
\left(\begin{array}{rrr}
-\frac{1}{2}-2 i & 4 i & \frac{1}{2}+5 i \tag{4}\\
1+2 i & -3 i & -1-4 i \\
-1-2 i & 4 i & 1+5 i
\end{array}\right)
$$

3. Find 2×2 matrices $\overline{\bar{A}}$ and $\overline{\bar{B}}$ having real entries such that $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}, \lim _{m \rightarrow \infty} \overline{\bar{B}}^{m}$, and $\lim _{m \rightarrow \infty}(\overline{\overline{A B}})^{m}$ all exist, but

$$
\begin{equation*}
\lim _{m \rightarrow \infty}(\overline{\overline{A B}})^{m} \neq\left(\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}\right)\left(\lim _{m \rightarrow \infty} \overline{\bar{B}}^{m}\right) \tag{5}
\end{equation*}
$$

From Scratch !!

- Section 5.2: Diagonalizability
- Theorem 5.5: Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ be distinct eigenvalues of \hat{T}. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ are the corresponding eigenvectors of \hat{T}, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.
- Corollary: If \hat{T} has n distinct eigenvalues, then \hat{T} is diagonalizable.
- Theorem 5.6: The characteristic polynomial of any diagonalizable linear operator splits.
- Definition: The (algebra) multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$.
- Definition: The set $E_{\lambda}=\{\vec{x} \in \mathcal{V}: \hat{T}(\vec{x})=\lambda \vec{x}\} \equiv N\left(\hat{T}-\lambda \hat{I}_{v}\right)$ is called the eigenspace of \hat{T} corresponding to the eigenvalue λ.
- Theorem 5.7: Let λ be an eigenvalue of \hat{T} having multiplicity m, then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.
- Theorem 5.8: Let $S_{i}, i=1,2, \ldots, k$, be a finite linearly independent subset of the eigenspace $E_{\lambda_{i}}$, then $S=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ is a linearly independent subset of \mathcal{V}.
- Theorem 5.9:

1. \hat{T} is diagonalizable iff the multiplicity of λ_{i} is equal to $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for all i.
2. If \hat{T} is diagonalizable and β_{i} is an ordered basis for $E_{\lambda_{i}}$, for each i, then $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$ is an ordered basis for \mathcal{V} consisting of eigenvectors of \hat{T}.

- Test of Diagonalization:
- Systems of Differential Equations:

$$
\begin{align*}
& \frac{d x_{1}}{d t}=3 x_{1}+x_{2}+x_{3} \tag{6}\\
& \frac{d x_{2}}{d t}=2 x_{1}+4 x_{2}+2 x_{3} \tag{7}\\
& \frac{d x_{3}}{d t}=-x_{1}-x_{2}+x_{3} \tag{8}
\end{align*}
$$

- Direct Sum (skip)
- Section 5.3: Matrix limits
- Definition: The sequence $\left\{\overline{\bar{A}}_{1}, \overline{\bar{A}}_{2}, \ldots\right\}$ is said to be converge to the matrix $\overline{\bar{L}}$, called the limit of the sequence, if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\overline{\bar{A}}_{m}\right)_{i j}=\overline{\bar{L}}_{i j} \tag{9}
\end{equation*}
$$

- Theorem 5.12: For any $\overline{\bar{P}}$ and $\overline{\bar{Q}}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \overline{\bar{P}} \overline{\bar{A}}_{m}=\overline{\overline{P L}} \quad \text { and } \quad \lim _{m \rightarrow \infty} \overline{\bar{A}}_{m} \overline{\bar{Q}}=\overline{\overline{L Q}} \tag{10}
\end{equation*}
$$

- Corollary: If $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}=\overline{\bar{L}}$, then, for any invertible matrix $\overline{\bar{Q}}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\overline{\bar{Q}} \overline{\bar{A}} \overline{\bar{Q}}^{-1}\right)^{m}=\overline{\bar{Q}} \overline{\bar{L}} \overline{\bar{Q}}^{-1} \tag{11}
\end{equation*}
$$

- Theorem 5.13: $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}$ exists iff

1. Every eigenvalue of $\overline{\bar{A}}$ is contained in S.
2. If 1 is an eigenvalue of $\overline{\bar{A}}$, then the dimension of the eigenspace corresponding 1 equlas the multiplicity of 1 as an eigenvalue of $\overline{\bar{A}}$.

- Markov chain (skip)

