Linear Algebra, EE 10810/EECS 205004

Note 5.4
Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Next Quiz on Dec. 9th, Wednesday.

- Assignment:

1. For a three-state Markov chain with the initial probability vector $\left(\begin{array}{c}0.3 \\ 0.3 \\ 0.4\end{array}\right)$, compute the proportions of objects in each state after two stages and the eventual proportions of objections in each state by determining the fixed probability vector:

$$
\left(\begin{array}{rrr}
0.6 & 0.1 & 0.1 \tag{1}\\
0.1 & 0.9 & 0.2 \\
0.3 & 0 & 0.7
\end{array}\right)
$$

2. For a matrix $\overline{\bar{A}}=\left(\begin{array}{rr}3 & -10 \\ 1 & -4\end{array}\right)$, find the solutions of \vec{x} to the following system of differential equations:

$$
\begin{equation*}
\frac{d}{d t} \vec{x}=\overline{\bar{A}} \vec{x} \tag{2}
\end{equation*}
$$

3. Let \hat{T} be a linear operator on a vector space \mathcal{V}, and \vec{v} be a nonzero vector in \mathcal{V}, and let \hat{T} be the \hat{T}-cyclic subspace of \mathcal{V} generated by \vec{v}. Prove that
(a) \mathcal{W} is \hat{T}-invariant.
(b) Any \hat{T}-invariant subspace of \mathcal{V} containing \vec{v} also contains \mathcal{W}, i.e., \mathcal{W} is the "smallest" \hat{T}-invariant subspace of \mathcal{V} containing \vec{v}.
4. Let $\overline{\bar{A}}$ denote a $k \times k$ matrix

$$
\left(\begin{array}{lllll}
0 & 0 & \ldots & 0 & -a_{0} \tag{3}\\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
. & . & \ldots & . & \\
. & . & \ldots & . & \\
. & . & \ldots & . & \\
0 & 0 & \ldots & 0 & -a_{k-1} \\
0 & 0 & \ldots & 1 & -a_{k-1}
\end{array}\right)
$$

where $a_{0}, a_{1}, \ldots a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of $\overline{\bar{A}}$ is

$$
\begin{equation*}
(-1)^{k}\left(a_{0}+a_{1} \lambda+\ldots+a_{k-1} \lambda^{k-1}+\lambda^{k}\right) \tag{4}
\end{equation*}
$$

Hint: Use mathematical induction on k, expanding the determinant along the first row.

From Scratch !!

- Section 5.3: Matrix limits
- Definition: The sequence $\left\{\overline{\bar{A}}_{1}, \overline{\bar{A}}_{2}, \ldots\right\}$ is said to be converge to the matrix $\overline{\bar{L}}$, called the limit of the sequence, if

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\overline{\bar{A}}_{m}\right)_{i j}=\overline{\bar{L}}_{i j} \tag{5}
\end{equation*}
$$

- Theorem 5.13: $\lim _{m \rightarrow \infty} \overline{\bar{A}}^{m}$ exists iff

1. Every eigenvalue of $\overline{\bar{A}}$ is contained in S.
2. If 1 is an eigenvalue of $\overline{\bar{A}}$, then the dimension of the eigenspace corresponding 1 equlas the multiplicity of 1 as an eigenvalue of $\overline{\bar{A}}$.

- Mark chain (skip)
- Section 5.4: Invariant Subspace and the Cayley-Hamilton Theorem
- Definition: A subspace \mathcal{W} of \mathcal{V} is called a \hat{T}-invariant subspace of \mathcal{V} if $\hat{T}(\mathcal{W}) \subseteq \mathcal{W}$, that is, if $\hat{T}(\vec{v}) \in \mathcal{W}$ for all $\vec{v} \in \mathcal{W}$.
- Examples: $\{\overrightarrow{0}\}, \mathcal{V}, R(\hat{T}), N(\hat{T}), E_{\lambda}$
- Definition: \hat{T}-cyclic subspace of \mathcal{V} generated by $\vec{x}: \mathcal{W}=\operatorname{span}\left(\left\{\vec{x}, \hat{T}(\vec{x}), \hat{T}^{2}(\vec{x}), \ldots\right\}\right)$
- Definition: restriction $T_{\mathcal{W}}$
- Theorem 5.21: Let \mathcal{W} be a \hat{T}-invariant subspace of \mathcal{V}, then the characteristic polynomial of $\hat{T}_{\mathcal{W}}$ divides the characteristic polynomial of \hat{T}.
- Theorem 5.22: Let \mathcal{W} be a \hat{T}-cyclic subspace of \mathcal{V} generated by a nonzero vector $\vec{v} \in \mathcal{V}$. Let $\operatorname{dim}(\mathcal{W})=k$, then

1. $\left\{\vec{v}, \hat{T}(\vec{v}), \hat{T}^{2}(\vec{v}), \ldots \hat{T}^{k-1}(\vec{v})\right\}$ is a basis for \mathcal{W}.
2. If $a_{0} \vec{v}+a_{1} \hat{T}(\vec{v})+a_{2} \hat{T}^{2}(\vec{v})+\ldots+a_{k-1} \hat{T}^{k-1}(\vec{v})+\hat{T}^{k}(\vec{v})=0$, then the characteristic polynomial of $\hat{T}_{\mathcal{W}}$ is

$$
\begin{equation*}
f(\lambda)=(-1)^{k}\left(a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{k-1} \lambda^{k-1}+\lambda^{k}\right) \tag{6}
\end{equation*}
$$

- Theorem 5.23 (Cayley-Hamilton theorem): Let $f(\lambda)$ be the characteristic polynomial of \hat{T}. Then $f(\hat{T})=\hat{T}_{0}$, the zero transformation. That is, \hat{T} satisfies its characteristic equation.
- Corollary: Let $\overline{\bar{A}}$ be an $n \times n$ matrix and let $f(\lambda)$ bee the characteristic polynomial of $\overline{\bar{A}}$. Then $f(\overline{\bar{A}})=\overline{\bar{O}}$, the $n \times n$ zero matrix.
- Invariant Subspace and Direct Sum
- Definition: Sum, $\mathcal{W}_{1}+\mathcal{W}_{2}+\ldots+\mathcal{W}_{k}$ or $\sum_{i=1}^{k} \mathcal{W}_{i}$
- Definition: Direct Sum, $\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \ldots \oplus \mathcal{W}_{k}$ if $\mathcal{V}=\sum_{i=1}^{k} \mathcal{W}_{i}$ and $\mathcal{W}_{j} \cap \sum_{i \neq j}^{k} \mathcal{W}_{i}=\{\overrightarrow{0}\}$ for each $j(1 \leq j \leq k)$.
- Theorem 5.10: $\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \ldots \oplus \mathcal{W}_{k}$ is equivalent to

1. $\mathcal{V}=\sum_{i=1}^{k} \mathcal{W}_{i}$ and for any vectors $\vec{v}_{i} \in \mathcal{W}_{i}$.
2. Each vector $\vec{v} \in \mathcal{V}$ can be uniquely written as $\vec{v}=\vec{v}_{1}+\vec{v}_{2}+\ldots \vec{v}_{k}$, where $\vec{v}_{i} \in \mathcal{W}_{i}$.
3. If γ_{i} is an ordered basis for \mathcal{W}_{i}, then $\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{k}$ is an ordered basis for \mathcal{V}.
4. For each $i=1,2, \ldots k$, there exists an order basis γ_{i} for \mathcal{W}_{i} such that $\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{k}$ is an ordered basis for \mathcal{V}.

- Theorem 5.11: A linear operator \hat{T} on a finite-dimensional vector space \mathcal{V} is diagonalizable iff \mathcal{V} is the direct sum of the eigenspace of \hat{T}.
- Theorem 5.24: Suppose $\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \ldots \oplus \mathcal{W}_{k}$, where \mathcal{W}_{i} is an \hat{T}-invariant subspace of \mathcal{V} for each $i(1 \leq i \leq k)$, and $f_{i}(\lambda)$ is the characteristic polynomial of $\hat{T}_{\mathcal{W}_{i}}$, then

$$
\begin{equation*}
f_{1}(\lambda) \cdot f_{2}(\lambda) \cdots \cdots f_{k}(\lambda) \tag{7}
\end{equation*}
$$

is the characteristic polynomial of \hat{T}.

- Direct sum of matrix: $\overline{\bar{A}}=\left(\begin{array}{cccc}\overline{\bar{B}}_{1} & \overline{\bar{O}} & \ldots & \overline{\bar{O}} \\ \overline{\bar{O}} & \overline{\bar{B}}_{2} & \ldots & \overline{\bar{O}} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \dot{\bar{O}} & \cdot & & \cdot \\ \overline{\bar{O}} & \ldots & \overline{\bar{B}}_{k}\end{array}\right)$
- Theorem 5.25: If $\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \ldots \oplus \mathcal{W}_{k}$, then $\overline{\bar{A}}=\overline{\bar{B}}_{1} \oplus \overline{\bar{B}}_{2} \oplus \ldots \oplus \overline{\bar{B}}_{k}$.

