Linear Algebra, EE 10810/EECS 205004

Note 5.4

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Next Quiz on Dec. 9th, Wednesday.

• Assignment:

1. For a three-state Markov chain with the initial probability vector $\begin{pmatrix} 0.3\\ 0.3\\ 0.4 \end{pmatrix}$, compute the proportions of objects in each state after two stages and the eventual proportions of objections in each state by determining the fixed probability vector:

$$\begin{pmatrix} 0.6 & 0.1 & 0.1 \\ 0.1 & 0.9 & 0.2 \\ 0.3 & 0 & 0.7 \end{pmatrix}$$
(1)

2. For a matrix $\overline{\overline{A}} = \begin{pmatrix} 3 & -10 \\ 1 & -4 \end{pmatrix}$, find the solutions of \vec{x} to the following system of differential equations:

$$\frac{d}{dt}\vec{x} = \overline{\overline{A}}\vec{x}.$$
(2)

- 3. Let \hat{T} be a linear operator on a vector space \mathcal{V} , and \vec{v} be a nonzero vector in \mathcal{V} , and let \hat{T} be the \hat{T} -cyclic subspace of \mathcal{V} generated by \vec{v} . Prove that
 - (a) \mathcal{W} is \hat{T} -invariant.
 - (b) Any \hat{T} -invariant subspace of \mathcal{V} containing \vec{v} also contains \mathcal{W} , i.e., \mathcal{W} is the "smallest" \hat{T} -invariant subspace of \mathcal{V} containing \vec{v} .
- 4. Let $\overline{\overline{A}}$ denote a $k \times k$ matrix

where $a_0, a_1, \ldots a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of $\overline{\overline{A}}$ is

$$(-1)^{k}(a_{0} + a_{1}\lambda + \ldots + a_{k-1}\lambda^{k-1} + \lambda^{k})$$
(4)

Hint: Use mathematical induction on k, expanding the determinant along the first row.

From Scratch !!

- Section 5.3: Matrix limits
- Definition: The sequence $\{\overline{\overline{A}}_1, \overline{\overline{A}}_2, \ldots\}$ is said to be converge to the matrix $\overline{\overline{L}}$, called the limit of the sequence, if

$$\lim_{m \to \infty} (\overline{\overline{A}}_m)_{ij} = \overline{\overline{L}}_{ij} \tag{5}$$

- Theorem 5.13: $\lim_{m\to\infty} \overline{\overline{A}}^m$ exists iff
 - 1. Every eigenvalue of $\overline{\overline{A}}$ is contained in S.
 - 2. If 1 is an eigenvalue of $\overline{\overline{A}}$, then the dimension of the eigenspace corresponding 1 equals the multiplicity of 1 as an eigenvalue of $\overline{\overline{A}}$.
- Markov chain (skip)
- Section 5.4: Invariant Subspace and the Cayley-Hamilton Theorem
- Definition: A subspace \mathcal{W} of \mathcal{V} is called a \hat{T} -invariant subspace of \mathcal{V} if $\hat{T}(\mathcal{W}) \subseteq \mathcal{W}$, that is, if $\hat{T}(\vec{v}) \in \mathcal{W}$ for all $\vec{v} \in \mathcal{W}$.
- Examples: $\{\vec{0}\}, \mathcal{V}, R(\hat{T}), N(\hat{T}), E_{\lambda}$
- Definition: \hat{T} -cyclic subspace of \mathcal{V} generated by \vec{x} : $\mathcal{W} = \text{span}(\{\vec{x}, \hat{T}(\vec{x}), \hat{T}^2(\vec{x}), \ldots\})$
- Definition: restriction $T_{\mathcal{W}}$
- Theorem 5.21: Let \mathcal{W} be a \hat{T} -invariant subspace of \mathcal{V} , then the characteristic polynomial of $\hat{T}_{\mathcal{W}}$ divides the characteristic polynomial of \hat{T} .
- Theorem 5.22: Let \mathcal{W} be a \hat{T} -cyclic subspace of \mathcal{V} generated by a nonzero vector $\vec{v} \in \mathcal{V}$. Let $dim(\mathcal{W}) = k$, then

1.
$$\{\vec{v}, \hat{T}(\vec{v}), \hat{T}^{2}(\vec{v}), \dots \hat{T}^{k-1}(\vec{v})\}$$
 is a basis for \mathcal{W} .

2. If
$$a_0 \vec{v} + a_1 \hat{T}(\vec{v}) + a_2 \hat{T}^2(\vec{v}) + \ldots + a_{k-1} \hat{T}^{k-1}(\vec{v}) + \hat{T}^k(\vec{v}) = 0$$
, then the characteristic polynomial of $\hat{T}_{\mathcal{W}}$ is

$$f(\lambda) = (-1)^k (a_0 + a_1\lambda + a_2\lambda^2 + \ldots + a_{k-1}\lambda^{k-1} + \lambda^k)$$
(6)

- Theorem 5.23 (Cayley-Hamilton theorem): Let $f(\lambda)$ be the characteristic polynomial of \hat{T} . Then $f(\hat{T}) = \hat{T}_0$, the zero transformation. That is, \hat{T} satisfies its characteristic equation.
- Corollary: Let $\overline{\overline{A}}$ be an $n \times n$ matrix and let $f(\lambda)$ bee the characteristic polynomial of $\overline{\overline{A}}$. Then $f(\overline{\overline{A}}) = \overline{\overline{O}}$, the $n \times n$ zero matrix.
- Invariant Subspace and Direct Sum
- Definition: Sum, $W_1 + W_2 + \ldots + W_k$ or $\sum_{i=1}^k W_i$
- Definition: Direct Sum, $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \ldots \oplus \mathcal{W}_k$ if $\mathcal{V} = \sum_{i=1}^k \mathcal{W}_i$ and $\mathcal{W}_j \cap \sum_{i \neq j}^k \mathcal{W}_i = \{\vec{0}\}$ for each $j(1 \le j \le k)$.
- Theorem 5.10: $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \ldots \oplus \mathcal{W}_k$ is equivalent to
 - 1. $\mathcal{V} = \sum_{i=1}^{k} \mathcal{W}_i$ and for any vectors $\vec{v}_i \in \mathcal{W}_i$.
 - 2. Each vector $\vec{v} \in \mathcal{V}$ can be uniquely written as $\vec{v} = \vec{v}_1 + \vec{v}_2 + \dots \vec{v}_k$, where $\vec{v}_i \in \mathcal{W}_i$.
 - 3. If γ_i is an ordered basis for \mathcal{W}_i , then $\gamma_1 \cup \gamma_2 \cup \ldots \cup \gamma_k$ is an ordered basis for \mathcal{V} .
 - 4. For each $i = 1, 2, \ldots k$, there exists an order basis γ_i for \mathcal{W}_i such that $\gamma_1 \cup \gamma_2 \cup \ldots \cup \gamma_k$ is an ordered basis for \mathcal{V} .
- Theorem 5.11: A linear operator \hat{T} on a finite-dimensional vector space \mathcal{V} is diagonalizable iff \mathcal{V} is the direct sum of the eigenspace of \hat{T} .
- Theorem 5.24: Suppose $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \ldots \oplus \mathcal{W}_k$, where \mathcal{W}_i is an \hat{T} -invariant subspace of \mathcal{V} for each $i(1 \leq i \leq k)$, and $f_i(\lambda)$ is the characteristic polynomial of $\hat{T}_{\mathcal{W}_i}$, then

$$f_1(\lambda) \cdot f_2(\lambda) \cdot \cdots \cdot f_k(\lambda),$$
 (7)

is the characteristic polynomial of \hat{T} .

• Direct sum of matrix:
$$\overline{\overline{A}} = \begin{pmatrix} \overline{\overline{B}}_1 & \overline{\overline{O}} & \dots & \overline{\overline{O}} \\ \overline{\overline{O}} & \overline{\overline{B}}_2 & \dots & \overline{\overline{O}} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & \overline{\overline{O}} & \overline{\overline{O}} & \dots & \overline{\overline{B}}_{\overline{D}} \end{pmatrix}$$

• Theorem 5.25: If $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \ldots \oplus \mathcal{W}_k$, then $\overline{\overline{A}} = \overline{\overline{B}}_1 \oplus \overline{\overline{B}}_2 \oplus \ldots \oplus \overline{\overline{B}}_k$.