Linear Algebra, EE 10810/EECS 205004

Note 6.1-6.2

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Next Quiz on Dec. 16th, Wednesday.
- 2nd-Exam, 10:10-13:10 on Dec. 18th, Friday.

- Assignment:

1. Provide the reasons why each of thee following is not an inner product on the given vector space.
(a) $\langle(a, b),(c, d)\rangle=a c-b d$ on \mathcal{R}^{2}.
(b) $\langle\overline{\bar{A}}, \overline{\bar{B}}\rangle=\operatorname{tr}(\overline{\bar{A}}+\overline{\bar{B}})$ on $\overline{\bar{M}}_{2 \times 2}(\mathcal{R})$.
2. Apply the Gram-Schmidt process to the given subset S of the inner product space \mathcal{V} to obtain an orthonormal basis for $\operatorname{span}(S)$
(a) $\mathcal{V}=\mathcal{R}^{3}, S=\{(1,0,1),(0,1,1),(1,3,3)\}$
(b) $\mathcal{V}=\overline{\bar{M}}_{2 \times 2}(\mathcal{R}), S=\left\{\left(\begin{array}{rr}3 & 5 \\ -1 & 1\end{array}\right),\left(\begin{array}{rr}-1 & 9 \\ 5 & -1\end{array}\right),\left(\begin{array}{rr}7 & -17 \\ 2 & -6\end{array}\right)\right\}$
3. Let \mathcal{V} be an inner product space, and let \mathcal{W} be a finite-dimensional subspace of \mathcal{V}. If $\vec{x} \notin \mathcal{W}$, prove that there exists $\vec{y} \in \mathcal{V}$ such that $\vec{y} \in \mathcal{W}^{\perp}$, but $\langle\vec{x}, \vec{y}\rangle \neq 0$.

From Scratch !!

- Section 5.4: Invariant Subspace and the Cayley-Hamilton Theorem
- Theorem 5.23 (Cayley-Hamilton theorem): Let $f(\lambda)$ be the characteristic polynomial of \hat{T}. Then $f(\hat{T})=\hat{T}_{0}$, the zero transformation. That is, \hat{T} satisfies its characteristic equation.
- Corollary: Let $\overline{\bar{A}}$ be an $n \times n$ matrix and let $f(\lambda)$ bee the characteristic polynomial of $\overline{\bar{A}}$. Then $f(\overline{\bar{A}})=\overline{\bar{O}}$, the $n \times n$ zero matrix.
- Section 6.1: Inner product space
- Definition: An inner product on \mathcal{V} is a function that assigns, to every ordered pair of vectors \vec{x} and \vec{y} in \mathcal{V}, a scalar in F, denoted $\langle\vec{x}, \vec{y}\rangle$, such that for all \vec{x}, \vec{y}, and \vec{z} in \mathcal{V} and all c in F, the following hold:

1. $\langle\vec{x}+\vec{z}, \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle+\langle\vec{z}, \vec{y}\rangle$.
2. $\langle c \vec{x}, \vec{y}\rangle=c\langle\vec{x}, \vec{y}\rangle$.
3. $\overline{\langle\vec{x}, \vec{y}\rangle}=\langle\vec{y}, \vec{x}\rangle$, where the bar denotes complex conjugation.
4. $\langle\vec{x}, \vec{x}\rangle>0$ if $\vec{x} \neq 0$.

- Definiton: Conjugate transpose or adjoint of $\overline{\bar{A}}$, i.e., $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.
- Frobenius inner product
- Definition: A vector space \mathcal{V} on F endowed with a specific inner product is called an inner product space.
- Theorem 6.1: Inner product space

1. $\langle\vec{x}, \vec{y}+\vec{z}\rangle=\langle\vec{x}, \vec{y}\rangle+\langle\vec{x}, \vec{z}\rangle$.
2. $\langle\vec{x}, c \vec{y}\rangle=\bar{c}\langle\vec{x}, \vec{y}\rangle$.
3. $\langle\vec{x}, \overrightarrow{0}\rangle=\langle\overrightarrow{0}, \vec{x}\rangle=0$.
4. $\langle\vec{x}, \vec{x}\rangle=0$ iff $\vec{x}=\overrightarrow{0}$.
5. $\langle\vec{x}, \vec{y}\rangle=\langle\vec{x}, \vec{z}\rangle$ for all $\vec{x} \in \mathcal{V}$, then $\vec{y}=\vec{z}$.

- Definition: norm or length of \vec{x}, denoted as $\|\vec{x}\| \equiv \sqrt{\langle\vec{x}, \vec{x}\rangle}$
- Theorem 6.2:

1. $\|c \vec{x}\|=|c| \cdot\|\vec{x}\|$.
2. $\|\vec{x}\|=0$ iff $\vec{x}=\overrightarrow{0}$.
3. Cauchy-Schwarz Inequality: $|\langle\vec{x}, \vec{y}\rangle| \leq\|\vec{x}\| \cdot\|\vec{y}\|$.
4. Triangle Inequality: $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$.

- Definition: orthogonal if $\langle\vec{x}, \vec{y}\rangle=0$.
- Unite vector if $\|\vec{x}\|=1$.
- Definition: orthonormal
- Normalizing:
- Section 6.2: Gram-Schmidt orthogonalization process
- Definition: orthonormal basis
- Theorem 6.3 (Gram-Schmidt process): Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ be an orthogonal subset of \mathcal{V}. If $\vec{y} \in \operatorname{span}(S)$, then

$$
\begin{equation*}
\vec{y}=\sum_{i=1}^{k} \frac{\left\langle\vec{y}, \vec{v}_{i}\right\rangle}{\left\|\vec{v}_{i}\right\|^{2}} \vec{v}_{i} \tag{1}
\end{equation*}
$$

- Theorem 6.4: Let $S=\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}\right\}$ be a linearly independent subset of \mathcal{V}. Define $S^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$, where $\vec{v}_{1}=\vec{w}_{1}$ and

$$
\begin{equation*}
\vec{v}_{k}=\vec{w}_{k}-\sum_{j=1}^{k-1} \frac{\left\langle\vec{w}_{k}, \vec{v}_{j}\right\rangle}{\left\|\vec{v}_{j}\right\|^{2}} \vec{v}_{j} . \tag{2}
\end{equation*}
$$

Then S^{\prime} is an orthogonal set oof nonzero vector such that $\operatorname{span}\left(S^{\prime}\right)=\operatorname{span}(S)$.

- Definition: orthogonal complement of S, i.e. $S^{\perp}=\{\vec{x} \in \mathcal{V}:\langle\vec{x}, \vec{y}\rangle=0$ for all $\vec{y} \in S\}$.

