Linear Algebra, EE 10810/EECS 205004

Note 6.2

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• 2nd-Exam, 10:10-13:10 on Dec. 18th, Friday.

From Scratch!!

- Definition: A vector space $\mathcal V$ on F endowed with a specific inner product is called an **inner product space**.
- Theorem 6.1: Inner product space
 - 1. $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$.
 - 2. $\langle \vec{x}, c \vec{y} \rangle = \bar{c} \langle \vec{x}, \vec{y} \rangle$.
 - 3. $\langle \vec{x}, \vec{0} \rangle = \langle \vec{0}, \vec{x} \rangle = 0$.
 - 4. $\langle \vec{x}, \vec{x} \rangle = 0$ iff $\vec{x} = \vec{0}$.
 - 5. $\langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{z} \rangle$ for all $\vec{x} \in \mathcal{V}$, then $\vec{y} = \vec{z}$.
- Definition: norm or length of \vec{x} , denoted as $||\vec{x}|| \equiv \sqrt{\langle \vec{x}, \vec{x} \rangle}$
- Theorem 6.2:
 - 1. $||c\vec{x}|| = |c| \cdot ||\vec{x}||$.
 - 2. $\|\vec{x}\| = 0$ iff $\vec{x} = \vec{0}$.
 - 3. Cauchy-Schwarz Inequality: $|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}|| \cdot ||\vec{y}||$.
 - 4. Triangle Inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.
- Definition: orthogonal if $\langle \vec{x}, \vec{y} \rangle = 0$.
- Unite vector if $||\vec{x}|| = 1$.
- Definition: orthonormal
- Normalizing:
- Section 6.2: Gram-Schmidt orthogonalization process
- Definition: orthonormal basis
- Theorem 6.3 (Gram-Schmidt process): Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be an orthogonal subset of \mathcal{V} . If $\vec{y} \in \text{span}(S)$, then

$$\vec{y} = \sum_{i=1}^{k} \frac{\langle \vec{y}, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i \tag{1}$$

• Theorem 6.4: Let $S = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$ be a linearly independent subset of \mathcal{V} . Define $S' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, where $\vec{v}_1 = \vec{w}_1$ and

$$\vec{v}_k = \vec{w}_k - \sum_{j=1}^{k-1} \frac{\langle \vec{w}_k, \vec{v}_j \rangle}{\|\vec{v}_j\|^2} \vec{v}_j.$$
 (2)

Then S' is an orthogonal set oof nonzero vector such that $\operatorname{span}(S') = \operatorname{span}(S)$.

- Definition: orthogonal complement of S, i.e. $S^{\perp} = \{\vec{x} \in \mathcal{V} : \langle \vec{x}, \vec{y} \rangle = 0 \text{ for all } \vec{y} \in S\}.$
- Projection of \vec{b} onto the line through \vec{x} :

$$\vec{p} = \left(\frac{\vec{x}\vec{x}^t}{\vec{x}^t\vec{x}}\right)\vec{b} \tag{3}$$

• Projection of \vec{b} on a subpace $\overline{\overline{A}} = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$:

$$\vec{p} = \overline{\overline{A}} \left(\overline{\overline{A}}^t \, \overline{\overline{A}} \right)^{-1} \, \overline{\overline{A}}^t \, \vec{b} \tag{4}$$

• Least squares approximation