Linear Algebra, EE 10810/EECS 205004

Note 6.3-6.4
Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

- Next Quiz on Dec. 30th, Wednesday.
- Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.

- Assignment:

1. Let $\overline{\bar{A}}$ be an $n \times n$ matrix. Prove that

$$
\begin{equation*}
\operatorname{det}(\overline{\bar{A}})^{*}=\overline{\operatorname{det}(\overline{\bar{A}})} \tag{1}
\end{equation*}
$$

2. Find the minimal solution to the following system of linear equations

$$
\begin{array}{r}
x+y-z=0 \\
2 x-y+z=3 \tag{2}\\
x-y+z=2
\end{array}
$$

3. Let \mathcal{V} be a complex inner product space, and let \hat{T} be a linear operator on \mathcal{V}. Define

$$
\begin{equation*}
\hat{T}_{1} \equiv \frac{1}{2}\left(\hat{T}+\hat{T}^{*}\right), \quad \text { and } \quad \hat{T}_{2}=\frac{1}{2 i}\left(\hat{T}-\hat{T}^{*}\right) \tag{3}
\end{equation*}
$$

(a) Prove that \hat{T}_{1} and \hat{T}_{2} are self-adjoint.
(b) Suppose also that $\hat{T}=\hat{U}_{1}+i \hat{U}_{2}$, where \hat{U}_{1} and \hat{U}_{2} are self-adjoint. Prove that $\hat{U}_{1}=\hat{T}_{1}$ and $\hat{U}_{2}=\hat{U}_{2}$.
(c) Prove that \hat{T} is normal if and only if $\hat{T}_{1} \hat{T}_{2}=\hat{T}_{2} \hat{T}_{1}$.

From Scratch !!

- Defintion: adjoint of the operator T, i.e., $\langle\hat{T}(\vec{x}), \vec{y}\rangle=\left\langle\vec{x}, \hat{T}^{*}(\vec{y})\right\rangle$.
- Theorem 6.9: There exists a unique adjoint function \hat{T}^{*}.
- Theorem 6.10: $\left[\hat{T}^{*}\right]_{\beta}=[\hat{T}]_{\beta}^{*}$
- Theorem 6.11:

1. $(\hat{T}+\hat{U})^{*}=\hat{T}^{*}+\hat{U}^{*}$
2. $(c \hat{T})^{*}=\bar{c} \hat{T}^{*}$
3. $(\hat{T} \hat{U})^{*}=\hat{U}^{*} \hat{T}^{*}$
4. $\hat{T}^{* *}=\hat{T}$
5. $\hat{I}^{*}=\hat{I}$

- Least squares approximation
- Lemma: If \hat{T} has an eigenvector, then so does \hat{T}^{*}
- Theorem 6.14 (Schur): There exists an orthonormal basis β for \mathcal{V}, such that the matrix $[\hat{T}]_{\beta}$ is upper triangular.
- Definition: normal $\hat{T} \hat{T}^{*}=\hat{T}^{*} \hat{T}$ or $\overline{\overline{A A}}^{*}=\overline{\bar{A}}^{*} \overline{\bar{A}}$.
- Theorem 6.15:

1. $\|\hat{T}(\vec{x})\|=\left\|\hat{T}^{*}(\vec{x})\right\|$
2. $\hat{T}-c \hat{I}$ is normal for every $c \in F$
3. If $\hat{T}(\vec{x})=\lambda \vec{x}$, then $\hat{T}^{*}(\vec{x})=\bar{\lambda} \vec{x}$
4. If λ_{1} and λ_{2} are distinct eigenvectors of \hat{T} with corresponding eigenvectors \vec{x}_{1} and \vec{x}_{2}, then \vec{x}_{1} and \vec{x}_{2} are orthogonal.

- Theorem 6.16: \hat{T} is normal iff there exists an orthonormal basis for \mathcal{V} consisting of eigenvectors of \hat{T}.
- Definition: self-adjoint (Hermitian) if $\hat{T}=\hat{T}^{*}$ or $\overline{\bar{A}}=\overline{\bar{A}}^{*}$
- Lemma

1. Every eigenvalue of a self-adjoint operator \hat{T} is real.
2. Suppose that \mathcal{V} is a real inner product space, then the characteristic polynomial of \hat{T} splits.

- Theorem 6.17: \hat{T} is self-adjoint iff there exists an orthonormal basis β for \mathcal{V} consisting of eigenvectors of \hat{T}.
- Definition: positive definite if \hat{T} is self-adjoint and $\langle\hat{T}(\vec{x}), \vec{x}\rangle>0$ for all $\vec{x} \neq 0$

