Linear Algebra, EE 10810/EECS 205004

Note 6.3 - 6.4

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Next Quiz on Dec. 30th, Wednesday.

• Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.

• Assignment:

1. Let $\overline{\overline{A}}$ be an $n \times n$ matrix. Prove that

$$det(\overline{\overline{A}})^* = det(\overline{\overline{A}}) \tag{1}$$

2. Find the minimal solution to the following system of linear equations

$$\begin{array}{rcl}
x + y - z &= 0\\
2x - y + z &= 3\\
x - y + z &= 2
\end{array}$$
(2)

3. Let \mathcal{V} be a complex inner product space, and let \hat{T} be a linear operator on \mathcal{V} . Define

$$\hat{T}_1 \equiv \frac{1}{2}(\hat{T} + \hat{T}^*), \text{ and } \hat{T}_2 = \frac{1}{2i}(\hat{T} - \hat{T}^*)$$
(3)

- (a) Prove that \hat{T}_1 and \hat{T}_2 are self-adjoint.
- (b) Suppose also that $\hat{T} = \hat{U}_1 + i \hat{U}_2$, where \hat{U}_1 and \hat{U}_2 are self-adjoint. Prove that $\hat{U}_1 = \hat{T}_1$ and $\hat{U}_2 = \hat{U}_2$.
- (c) Prove that \hat{T} is normal if and only if $\hat{T}_1\hat{T}_2 = \hat{T}_2\hat{T}_1$.

From Scratch !!

- Definition: adjoint of the operator T, i.e., $\langle \hat{T}(\vec{x}), \vec{y} \rangle = \langle \vec{x}, \hat{T}^*(\vec{y}) \rangle$.
- Theorem 6.9: There exists a unique adjoint function \hat{T}^* .
- Theorem 6.10: $[\hat{T}^*]_{\beta} = [\hat{T}]^*_{\beta}$
- $\bullet\,$ Theorem 6.11:
 - 1. $(\hat{T} + \hat{U})^* = \hat{T}^* + \hat{U}^*$ 2. $(c\hat{T})^* = \bar{c}\hat{T}^*$ 3. $(\hat{T}\hat{U})^* = \hat{U}^*\hat{T}^*$
 - 4. $\hat{T}^{**} = \hat{T}$

5.
$$I^* = I$$

- Least squares approximation
- Lemma: If \hat{T} has an eigenvector, then so does \hat{T}^*
- Theorem 6.14 (Schur): There exists an orthonormal basis β for \mathcal{V} , such that the matrix $[\hat{T}]_{\beta}$ is upper triangular.
- Definition: normal $\hat{T}\hat{T}^* = \hat{T}^*\hat{T}$ or $\overline{\overline{AA}}^* = \overline{\overline{A}}^*\overline{\overline{A}}$.
- $\bullet\,$ Theorem 6.15:
 - 1. $||\hat{T}(\vec{x})|| = ||\hat{T}^*(\vec{x})||$
 - 2. $\hat{T} c\hat{I}$ is normal for every $c \in F$
 - 3. If $\hat{T}(\vec{x}) = \lambda \vec{x}$, then $\hat{T}^*(\vec{x}) = \bar{\lambda} \vec{x}$
 - 4. If λ_1 and λ_2 are distinct eigenvectors of \hat{T} with corresponding eigenvectors \vec{x}_1 and \vec{x}_2 , then \vec{x}_1 and \vec{x}_2 are orthogonal.
- Theorem 6.16: \hat{T} is normal iff there exists an orthonormal basis for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Definition: self-adjoint (Hermitian) if $\hat{T} = \hat{T}^*$ or $\overline{\overline{A}} = \overline{\overline{A}}^*$
- Lemma
 - 1. Every eigenvalue of a self-adjoint operator \hat{T} is real.
 - 2. Suppose that \mathcal{V} is a real inner product space, then the characteristic polynomial of \hat{T} splits.
- Theorem 6.17: \hat{T} is self-adjoint iff there exists an orthonormal basis β for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Definition: positive definite if \hat{T} is self-adjoint and $\langle \hat{T}(\vec{x}), \vec{x} \rangle > 0$ for all $\vec{x} \neq 0$