Linear Algebra, EE 10810/EECS 205004

Note 6.5

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Next Quiz on Jan. 6th, Wednesday.
- Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.

- Assignment:

1. Let \hat{T} and \hat{U} be a self-adjoint linear operators on an n-dimensional inner product space \mathcal{V}, and let $\overline{\bar{A}}=[\hat{T}]_{\beta}$, where β is an orthonormal basis for \mathcal{V}. Prove the following results.
(a) \hat{T} is positive definite (semi-definite) if an only if all of its eigenvalues are positive (non-negative).
(b) \hat{T} is positive definite if and only if

$$
\begin{equation*}
\sum_{i, j} A_{i, j} a_{j} \bar{a}_{i}>0 \quad \text { for all nonzero } n \text {-tuples }\left(a_{1}, a_{2}, \ldots, a_{n}\right) \tag{1}
\end{equation*}
$$

(c) \hat{T} is positive semidefinite if and only if $\overline{\bar{A}}=\overline{\bar{B}}^{*} \overline{\bar{B}}$ for some square matrix $\overline{\bar{B}}$.
(d) If \hat{T} and \hat{U} are positive definite operators such that $\hat{T}^{2}=\hat{U}^{2}$, then $\hat{T}=\hat{U}$.
2. For the following matrix $\overline{\bar{A}}$, find an orthogonal or unitary matrix $\overline{\bar{P}}$ and a diagonal matrix $\overline{\bar{D}}$ such that $\overline{\bar{P}}{ }^{*} \overline{\overline{A P}}=\overline{\bar{D}}$:
(a)

$$
\left(\begin{array}{ll}
1 & 2 \tag{2}\\
2 & 1
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{cc}
2 & 3-3 i \tag{3}\\
3+3 i & 5
\end{array}\right)
$$

3. Which of the following pairs of matrices are unitarily equivalent?
(a)

$$
\left(\begin{array}{ll}
1 & 0 \tag{4}\\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{rrr}
0 & 1 & 0 \tag{5}\\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

From Scratch !!

Section 6.3: Adjoint of linear operator

- Theorem 6.9: There exists a unique adjoint function \hat{T}^{*}.
- Theorem 6.10: Let β be an orthonormal basis, $\left[\hat{T}^{*}\right]_{\beta}=[\hat{T}]_{\beta}^{*}$

App: Least squares approximation

- Theorem 6.12: There exists $\vec{x}_{0} \in F^{n}$ such that $\left(\overline{\bar{A}}^{*} \overline{\bar{A}}\right) \vec{x}_{0}=\overline{\bar{A}}^{*} \vec{y}$ and $\left\|\overline{\bar{A}} \vec{x}_{0}-\vec{y}\right\| \leq\left\|\overline{\bar{A}} \vec{x}_{0}-\vec{y}\right\|$.

App: Minimal solution to systems of linear equations:

- Theorem 6.13: There exists exactly one minimal solution \vec{s} of $\overline{\bar{A}} \vec{x}=\vec{b}$, and $\vec{s} \in R\left(\hat{L}_{A^{*}}\right)$, i.e., $\overline{\bar{A}}\left(\overline{\bar{A}}^{*} \vec{u}\right)=\vec{b}$ and $\vec{s}=\overline{\bar{A}}^{*} \vec{u}$.

Section 6.4: Normal and Self-adjoint operators

- Theorem 6.14 (Schur): There exists an orthonormal basis β for \mathcal{V}, such that the matrix $[\hat{T}]_{\beta}$ is upper triangular.
- Definition: normal $\hat{T} \hat{T}^{*}=\hat{T}^{*} \hat{T}$ or $\overline{\overline{A A}}^{*}=\overline{\bar{A}}^{*} \overline{\bar{A}}$.
- Theorem 6.15: Let \hat{T} be a normal operator on \mathcal{V},

1. $\|\hat{T}(\vec{x})\|=\left\|\hat{T}^{*}(\vec{x})\right\|$
2. $\hat{T}-c \hat{I}$ is normal for every $c \in F$
3. If $\hat{T}(\vec{x})=\lambda \vec{x}$, then $\hat{T}^{*}(\vec{x})=\bar{\lambda} \vec{x}$
4. If λ_{1} and λ_{2} are distinct eigenvectors of \hat{T} with corresponding eigenvectors \vec{x}_{1} and \vec{x}_{2}, then \vec{x}_{1} and \vec{x}_{2} are orthogonal.

- Theorem 6.16: \hat{T} is normal iff there exists an orthonormal basis for \mathcal{V} consisting of eigenvectors of \hat{T}.
- Definition: self-adjoint (Hermitian) if $\hat{T}=\hat{T}^{*}$ or $\overline{\bar{A}}=\overline{\bar{A}}^{*}$
- Lemma

1. Every eigenvalue of a self-adjoint operator \hat{T} is real.
2. Suppose that \mathcal{V} is a real inner product space, then the characteristic polynomial of \hat{T} splits.

- Theorem 6.17: \hat{T} is self-adjoint iff there exists an orthonormal basis β for \mathcal{V} consisting of eigenvectors of \hat{T}.
- Definition: positive definite if \hat{T} is self-adjoint and $\langle\hat{T}(\vec{x}), \vec{x}\rangle>0$ for all $\vec{x} \neq 0$

Section 6.5: Unitary and Orthogonal operators

- Defintion: unitary operator if $\|\hat{T}(\vec{x})\|=\|\vec{x}\|$ for all $\vec{x} \in \mathcal{V}$ over $F=\mathcal{C}$.
- Defintion: unitary operator if $\|\hat{T}(\vec{x})\|=\|\vec{x}\|$ for all $\vec{x} \in \mathcal{V}$ over $F=\mathcal{R}$.
- Theorem 6.18: Let \hat{T} be a unitary operator on \mathcal{V},

1. $\hat{T} \hat{T}^{*}=\hat{T}^{*} \hat{T}=\hat{I}$.
2. $\langle\hat{T}(\vec{x}), \hat{T}(\vec{y})\rangle=\langle\vec{x}, \vec{y}\rangle$, for all $\vec{x}, \vec{y} \in \mathcal{V}$.
3. If β is an orthonormal basis for \mathcal{V}, then $\hat{T}(\beta)$ is an orthonormal basis for \mathcal{V}.
4. There exists an orthonormal basis β for \mathcal{V} such that $\hat{T}(\beta)$ is an orthonormal basis for \mathcal{V}.

- Rotation matrix:

$$
\left(\begin{array}{rr}
\cos \theta & -\sin \theta \tag{6}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

- Definition: orthogonal matrix if $\overline{\bar{A}}^{t} \overline{\bar{A}}=\overline{\overline{A A}}^{t}=\overline{\bar{I}}$.
- Definition: unitary matrix if $\overline{\bar{A}}^{*} \overline{\bar{A}}=\overline{\overline{A A}}^{*}=\overline{\bar{I}}$.
- Definition: $\overline{\bar{A}}$ and $\overline{\bar{B}}$ are unitarily equivalent (orthogonally equivalent) iff there exists a unitary (orthogonal) matrix $\overline{\bar{P}}$ such that $\overline{\bar{A}}=\overline{\bar{P}}^{*} \overline{\overline{B P}}$.
- Theorem 6.19: $\overline{\bar{A}}$ is normal iff $\overline{\bar{A}}$ is unitarily equivalent to a diagonal matrix.
- Theorem 6.20: $\overline{\bar{A}}$ is symmetry iff $\overline{\bar{A}}$ is orthogonally equivalent to a diagonal matrix.
- Theorem 6.21 (Schur): Let $\overline{\bar{A}} \in \overline{\bar{M}}_{n \times n}(F)$

1. If $F=\mathcal{C}$, then $\overline{\bar{A}}$ is unitarily equivalent to a complex upper triangular matrix.
2. If $F=\mathcal{R}$, then $\overline{\bar{A}}$ is orthogonally equivalent to a real upper triangular matrix.

App: Rigid Motions

