Linear Algebra, EE 10810/EECS 205004

Note 6.5

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

- Next Quiz on Jan. 6th, Wednesday.
- Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.

• Assignment:

- 1. Let \hat{T} and \hat{U} be a self-adjoint linear operators on an *n*-dimensional inner product space \mathcal{V} , and let $\overline{\overline{A}} = [\hat{T}]_{\beta}$, where β is an orthonormal basis for \mathcal{V} . Prove the following results.
 - (a) \hat{T} is positive definite (semi-definite) if an only if all of its eigenvalues are positive (non-negative).
 - (b) \hat{T} is positive definite if and only if

$$\sum_{i,j} A_{i,j} a_j \bar{a}_i > 0 \quad \text{for all nonzero } n\text{-tuples} (a_1, a_2, \dots, a_n)$$
(1)

- (c) \hat{T} is positive semidefinite if and only if $\overline{\overline{A}} = \overline{\overline{B}}^* \overline{\overline{B}}$ for some square matrix $\overline{\overline{B}}$.
- (d) If \hat{T} and \hat{U} are positive definite operators such that $\hat{T}^2 = \hat{U}^2$, then $\hat{T} = \hat{U}$.
- 2. For the following matrix $\overline{\overline{A}}$, find an orthogonal or unitary matrix $\overline{\overline{P}}$ and a diagonal matrix $\overline{\overline{D}}$ such that $\overline{\overline{P}}^* \overline{\overline{AP}} = \overline{\overline{D}}$: (a)

$$\left(\begin{array}{cc}
1 & 2\\
2 & 1
\end{array}\right)$$
(2)

(b)

$$\begin{pmatrix}
2 & 3-3i \\
3+3i & 5
\end{pmatrix}$$
(3)

- 3. Which of the following pairs of matrices are unitarily equivalent?
 - (a)

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{4}$$

(b)

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}$$
(5)

From Scratch !!

Section 6.3: Adjoint of linear operator

- Theorem 6.9: There exists a unique adjoint function \hat{T}^* .
- Theorem 6.10: Let β be an orthonormal basis, $[\hat{T}^*]_{\beta} = [\hat{T}]^*_{\beta}$
- App: Least squares approximation

• Theorem 6.12: There exists $\vec{x}_0 \in F^n$ such that $(\overline{\overline{A}}^*\overline{\overline{A}})\vec{x}_0 = \overline{\overline{A}}^*\vec{y}$ and $||\overline{\overline{A}}\vec{x}_0 - \vec{y}|| \le ||\overline{\overline{A}}\vec{x}_0 - \vec{y}||$.

App: Minimal solution to systems of linear equations:

• Theorem 6.13: There exists exactly one minimal solution \vec{s} of $\overline{A}\vec{x} = \vec{b}$, and $\vec{s} \in R(\hat{L}_{A^*})$, i.e., $\overline{A}(\overline{A}^*\vec{u}) = \vec{b}$ and $\vec{s} = \overline{A}^*\vec{u}$. Section 6.4: Normal and Self-adjoint operators

- Theorem 6.14 (Schur): There exists an orthonormal basis β for \mathcal{V} , such that the matrix $[\hat{T}]_{\beta}$ is upper triangular.
- Definition: normal $\hat{T}\hat{T}^* = \hat{T}^*\hat{T}$ or $\overline{\overline{A}\overline{A}}^* = \overline{\overline{A}}^*\overline{\overline{A}}$.
- Theorem 6.15: Let \hat{T} be a normal operator on \mathcal{V} ,
 - 1. $||\hat{T}(\vec{x})|| = ||\hat{T}^*(\vec{x})||$
 - 2. $\hat{T} c\hat{I}$ is normal for every $c \in F$
 - 3. If $\hat{T}(\vec{x}) = \lambda \vec{x}$, then $\hat{T}^*(\vec{x}) = \bar{\lambda} \vec{x}$
 - 4. If λ_1 and λ_2 are distinct eigenvectors of \hat{T} with corresponding eigenvectors \vec{x}_1 and \vec{x}_2 , then \vec{x}_1 and \vec{x}_2 are orthogonal.
- Theorem 6.16: \hat{T} is normal iff there exists an orthonormal basis for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Definition: self-adjoint (Hermitian) if $\hat{T} = \hat{T}^*$ or $\overline{\overline{A}} = \overline{\overline{A}}^*$
- Lemma
 - 1. Every eigenvalue of a self-adjoint operator \hat{T} is real.
 - 2. Suppose that \mathcal{V} is a real inner product space, then the characteristic polynomial of \hat{T} splits.
- Theorem 6.17: \hat{T} is self-adjoint iff there exists an orthonormal basis β for \mathcal{V} consisting of eigenvectors of \hat{T} .
- Definition: positive definite if \hat{T} is self-adjoint and $\langle \hat{T}(\vec{x}), \vec{x} \rangle > 0$ for all $\vec{x} \neq 0$

Section 6.5: Unitary and Orthogonal operators

- Definition: unitary operator if $||\hat{T}(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in \mathcal{V}$ over $F = \mathcal{C}$.
- Definition: unitary operator if $||\hat{T}(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in \mathcal{V}$ over $F = \mathcal{R}$.
- Theorem 6.18: Let \hat{T} be a unitary operator on \mathcal{V} ,
 - 1. $\hat{T}\hat{T}^* = \hat{T}^*\hat{T} = \hat{I}$.
 - 2. $\langle \hat{T}(\vec{x}), \hat{T}(\vec{y}) \rangle = \langle \vec{x}, \vec{y} \rangle$, for all $\vec{x}, \vec{y} \in \mathcal{V}$.
 - 3. If β is an orthonormal basis for \mathcal{V} , then $\hat{T}(\beta)$ is an orthonormal basis for \mathcal{V} .
 - 4. There exists an orthonormal basis β for \mathcal{V} such that $\hat{T}(\beta)$ is an orthonormal basis for \mathcal{V} .
- Rotation matrix:

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$
 (6)

- Definition: orthogonal matrix if $\overline{\overline{A}}^t \overline{\overline{A}} = \overline{\overline{A}\overline{A}}^t = \overline{\overline{I}}$.
- Definition: unitary matrix if $\overline{\overline{A}}^* \overline{\overline{A}} = \overline{\overline{AA}}^* = \overline{\overline{I}}$.
- Definition: $\overline{\overline{A}}$ and $\overline{\overline{B}}$ are unitarily equivalent (orthogonally equivalent) iff there exists a unitary (orthogonal) matrix $\overline{\overline{P}}$ such that $\overline{\overline{A}} = \overline{\overline{P}}^* \overline{\overline{BP}}$.
- Theorem 6.19: $\overline{\overline{A}}$ is normal iff $\overline{\overline{A}}$ is unitarily equivalent to a diagonal matrix.
- Theorem 6.20: $\overline{\overline{A}}$ is symmetry iff $\overline{\overline{A}}$ is orthogonally equivalent to a diagonal matrix.
- Theorem 6.21 (Schur): Let $\overline{\overline{A}} \in \overline{\overline{M}}_{n \times n}(F)$
 - 1. If F = C, then $\overline{\overline{A}}$ is unitarily equivalent to a complex upper triangular matrix.
 - 2. If $F = \mathcal{R}$, then $\overline{\overline{A}}$ is orthogonally equivalent to a real upper triangular matrix.

App: Rigid Motions