Linear Algebra, EE 10810/EECS 205004

Note 6.6 - 6.7

Ray-Kuang Lee^1

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw (Dated: Fall, 2020)

• Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.

• Assignment:

1. For the following matrices $\overline{\overline{A}}$:

(a)

$$\begin{pmatrix}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{pmatrix}$$
(1)

(b)

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \tag{2}$$

- (1) Verify that \hat{L}_A possesses a spectral decomposition.
- (2) For each eigenvalue of \hat{L}_A , explicitly define the orthogonal projection on the corresponding eigenspace.
- (3) Verify your results using the spectral theorem.
- 2. Find a singular value decomposition for the following matrix:

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & -2 & 1 \\
1 & -1 & 1 & 1
\end{pmatrix}$$
(3)

3. Find a polar decomposition for the following matrix:

$$\begin{pmatrix}
20 & 4 & 0 \\
0 & 0 & 1 \\
4 & 20 & 0
\end{pmatrix}$$
(4)

From Scratch!!

Section 6.5: Unitary and Orthogonal operators

- Defintion: unitary (orthogonal) operator if $||\hat{T}(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in \mathcal{V}$ over $F = \mathcal{C}(\mathcal{R})$.
- Theorem 6.18: Let \hat{T} be a unitary operator on \mathcal{V} ,
 - 1. $\hat{T}\hat{T}^* = \hat{T}^*\hat{T} = \hat{I}$.
 - 2. $\langle \hat{T}(\vec{x}), \hat{T}(\vec{y}) \rangle = \langle \vec{x}, \vec{y} \rangle$, for all $\vec{x}, \vec{y} \in \mathcal{V}$.
 - 3. If β is an orthonormal basis for \mathcal{V} , then $\hat{T}(\beta)$ is an orthonormal basis for \mathcal{V} .
 - 4. There exists an orthonormal basis β for \mathcal{V} such that $\hat{T}(\beta)$ is an orthonormal basis for \mathcal{V} .
- Rotation matrix: $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
- Definition: orthogonal matrix if $\overline{\overline{A}}^t \overline{\overline{A}} = \overline{\overline{A}} \overline{\overline{A}}^t = \overline{\overline{I}}$; and unitary matrix if $\overline{\overline{A}}^* \overline{\overline{A}} = \overline{\overline{A}} \overline{\overline{A}}^* = \overline{\overline{I}}$.
- Definition: $\overline{\overline{A}}$ and $\overline{\overline{B}}$ are unitarily equivalent (orthogonally equivalent) iff there exists a unitary (orthogonal) matrix $\overline{\overline{P}}$ such that $\overline{\overline{A}} = \overline{\overline{P}}^* \overline{\overline{BP}}$.
- Theorem 6.19: $\overline{\overline{A}}$ is normal iff $\overline{\overline{A}}$ is unitarily equivalent to a diagonal matrix.
- Theorem 6.20: $\overline{\overline{A}}$ is symmetry iff $\overline{\overline{A}}$ is orthogonally equivalent to a diagonal matrix.
- Theorem 6.21 (Schur): Let $\overline{\overline{A}} \in \overline{\overline{M}}_{n \times n}(F)$
 - 1. If $F = \mathcal{C}$, then $\overline{\overline{A}}$ is unitarily equivalent to a complex upper triangular matrix.
 - 2. If $F = \mathcal{R}$, then $\overline{\overline{A}}$ is orthogonally equivalent to a real upper triangular matrix.

App: Rigid Motions

Section 6.5: Orthogonal Projection and the Spectral Theorem

- Definition: \hat{T} is an orthogonal projection if $R(\hat{T})^{\perp} = N(\hat{T})$ and $N(\hat{T})^{\perp} = R(\hat{T})$
- Theorem 6.24: \hat{T} is an orthogonal projection iff \hat{T} has an adjoint \hat{T}^* and $\hat{T}^2 = \hat{T} = \hat{T}^*$
- Theorem 6.25 (The Spectral Theorem) Assume \hat{T} is normal if $F = \mathcal{C}$ and that \hat{T} is self-adjoint if $F = \mathcal{R}$. For each distinct eigenvalues λ_i , with the corresponding eigenspace of \hat{T} , W_i , and let \hat{T}_i be the orthogonal projection of \mathcal{V} on W_i .
 - (a) $\mathcal{V} = W_1 \oplus W_2 \oplus \ldots \oplus W_k$
 - (b) If W'_i denotes the direct sum of the subspace W_j , $j \neq i$, then $W_i^{\perp} = W'_i$
 - (c) $\hat{T}_i \hat{T}_j = \delta_{ij} \hat{T}_i$
 - (d) $\hat{I} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_k$
 - (e) $\hat{T} = \lambda_1 \hat{T}_1 + \lambda_2 \hat{T}_2 + \ldots + \lambda_k \hat{T}_k$

Section 6.6: Singular Value Decomposition (SVD)

• Theorem 6.26 (SVD for Linear Transformations): Let $\hat{T}: \mathcal{V} \to \mathcal{W}$ be a linear transformation of rank r, then there exist positive scalars $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r$ such that

$$\hat{T}(\vec{v}_i) = \begin{cases} \sigma_i \, \vec{u}_i, & \text{if } 1 \le i \le r \\ 0, & \text{if } i > r \end{cases}$$
 (5)

- Definition: the eigenvalues of $\hat{T}^*\hat{T}$ is called the *singular values*.
- Theorem 6.27 (SVD Theorem for Matrices): $\overline{\overline{A}}_{m \times n} = \overline{\overline{U}}_{m \times m} \overline{\overline{\Sigma}}_{m \times n} \overline{\overline{V}}_{n \times n}^*$
- Theorem 6.28 (Polar Decomposition): For any square matrix $\overline{\overline{A}}$, there exists a unitary matrix $\overline{\overline{W}}$ and a positive semidefinite matrix $\overline{\overline{P}}$ such that $\overline{\overline{A}} = \overline{\overline{W}} \overline{\overline{P}}$. Furthermore, if $\overline{\overline{A}}$ is invertible, then the representation is unique.
- Definition: Pseudoinverse (or Moore-Penrose generalized inverse): Let $\overline{\overline{A}}_{m \times n}$, there exists $\overline{\overline{B}}_{n \times m}$ such that $(\hat{L}_A)^{\dagger} : F^m \to F^n$, i.e., $\overline{\overline{B}} = \overline{\overline{A}}^{\dagger}$.
- Theorem 6.29: $\overline{\overline{A}}_{m \times n}^{\dagger} = \overline{\overline{\overline{V}}}_{n \times n} \overline{\overline{\overline{\overline{D}}}}_{n \times m}^{\dagger} \overline{\overline{\overline{\overline{U}}}}_{m \times m}^{*}$, with the singular values $1/\sigma_{i}$.
- Lemma: $\hat{T}^{\dagger}\hat{T}$ is the orthogonal projection of \mathcal{V} on $N(\hat{T})^{\perp}$.
- Lemma: $\hat{T}\hat{T}^{\dagger}$ is the orthogonal projection of \mathcal{W} on $R(\hat{T})^{\perp}$.
- Theorem 6.30: Consider $\overline{A}\vec{x} = \vec{b}$, then $\vec{z} = \overline{A}^{\dagger}\vec{b}$ has the following properties.