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• Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.

• Assignment:

1. For the following matrices A:

(a) (
0 2 2
2 0 2
2 2 0

)
(1)

(b) (
2 1 1
1 2 1
1 1 2

)
(2)

(1) Verify that L̂A possesses a spectral decomposition.

(2) For each eigenvalue of L̂A, explicitly define the orthogonal projection on the corresponding eigenspace.

(3) Verify your results using the spectral theorem.

2. Find a singular value decomposition for the following matrix:(
1 1 1 1
1 0 −2 1
1 −1 1 1

)
(3)

3. Find a polar decomposition for the following matrix:(
20 4 0
0 0 1
4 20 0

)
(4)
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From Scratch !!

Section 6.5: Unitary and Orthogonal operators

• Defintion: unitary (orthogonal) operator if ||T̂ (~x)|| = ||~x|| for all ~x ∈ V over F = C(R).

• Theorem 6.18: Let T̂ be a unitary operator on V,

1. T̂ T̂ ∗ = T̂ ∗T̂ = Î.

2. 〈T̂ (~x), T̂ (~y)〉 = 〈~x, ~y〉, for all ~x, ~y ∈ V.

3. If β is an orthonormal basis for V, then T̂ (β) is an orthonormal basis for V.

4. There exists an orthonormal basis β for V such that T̂ (β) is an orthonormal basis for V.

• Rotation matrix:

(
cos θ − sin θ
sin θ cos θ

)
• Definition: orthogonal matrix if A

t

A = AA
t

= I; and unitary matrix if A
∗
A = AA

∗
= I.

• Definition: A and B are unitarily equivalent (orthogonally equivalent) iff there exists a unitary (orthogonal) matrix P

such that A = P
∗
BP .

• Theorem 6.19: A is normal iff A is unitarily equivalent to a diagonal matrix.

• Theorem 6.20: A is symmetry iff A is orthogonally equivalent to a diagonal matrix.

• Theorem 6.21 (Schur): Let A ∈Mn×n(F )

1. If F = C, then A is unitarily equivalent to a complex upper triangular matrix.

2. If F = R, then A is orthogonally equivalent to a real upper triangular matrix.

App: Rigid Motions

Section 6.5: Orthogonal Projection and the Spectral Theorem

• Definition: T̂ is an orthogonal projection if R(T̂ )⊥ = N(T̂ ) and N(T̂ )⊥ = R(T̂ )

• Theorem 6.24: T̂ is an orthogonal projection iff T̂ has an adjoint T̂ ∗ and T̂ 2 = T̂ = T̂ ∗

• Theorem 6.25 (The Spectral Theorem) Assume T̂ is normal if F = C and that T̂ is self-adjoint if F = R. For each

distinct eigenvalues λi, with the corresponding eigenspace of T̂ , Wi, and let T̂i be the orthogonal projection of V on Wi.

(a) V = W1 ⊕W2 ⊕ . . .⊕Wk

(b) If W ′i denotes the direct sum of the subspace Wj , j 6= i, then W⊥i = W ′i

(c) T̂iT̂j = δij T̂i

(d) Î = T̂1 + T̂2 + . . .+ T̂k

(e) T̂ = λ1T̂1 + λ2T̂2 + . . .+ λkT̂k

Section 6.6: Singular Value Decomposition (SVD)

• Theorem 6.26 (SVD for Linear Transformations): Let T̂ : V → W be a linear transformation of rank r, then there exist
positive scalars σ1 ≥ σ2 ≥ . . . ≥ σr such that

T̂ (~vi) =

{
σi ~ui, if 1 ≤ i ≤ r
0, if i > r

(5)

• Definition: the eigenvalues of T̂ ∗T̂ is called the singular values.

• Theorem 6.27 (SVD Theorem for Matrices): Am×n = Um×mΣm×nV
∗
n×n

• Theorem 6.28 (Polar Decomposition): For any square matrix A, there exists a unitary matrix W and a positive semidef-

inite matrix P such that A = W P . Furthermore, if A is invertible, then the representation is unique.

• Definition: Pseudoinverse (or Moore-Penrose generalized inverse): Let Am×n, there exists Bn×m such that (L̂A)† : Fm →
Fn, i.e., B = A

†
.

• Theorem 6.29: A
†
m×n = V n×nΣ

†
n×mU

∗
m×m, with the singular values 1/σi.

• Lemma: T̂ †T̂ is the orthogonal projection of V on N(T̂ )⊥.

• Lemma: T̂ T̂ † is the orthogonal projection of W on R(T̂ )⊥.

• Theorem 6.30: Consider A~x = ~b, then ~z = A
†
~b has the following properties.


