# Linear Algebra, EE 10810/EECS 205004 

Note 7.1-7.2

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw
(Dated: Fall, 2020)

- Final-Exam, 10:10-13:10 on Jan. 13th, Wednesday.
- Assignment:

1. Find a Jordan canonical form $\overline{\bar{J}}$ of $\overline{\bar{A}}$ :

$$
\overline{\bar{A}}=\left(\begin{array}{rrr}
11 & -4 & -5  \tag{1}\\
21 & -8 & -11 \\
3 & -1 & 0
\end{array}\right)
$$

2. Find a Jordan canonical form $\overline{\bar{J}}$ of $\overline{\bar{A}}$, and an invertible matrix $\overline{\bar{Q}}$ such that $\overline{\bar{J}}=\overline{\bar{Q}}^{-1} \overline{\bar{A}} \overline{\bar{Q}}$ :

$$
\overline{\bar{A}}=\left(\begin{array}{rrr}
-3 & 3 & -2  \tag{2}\\
-7 & 6 & -3 \\
1 & -1 & 2
\end{array}\right)
$$

## From Scratch !!

Section 6.6: Singular Value Decomposition (SVD)

- Theorem 6.26 (SVD for Linear Transformations): Let $\hat{T}: \mathcal{V} \rightarrow \mathcal{W}$ be a linear transformation of rank $r$, then there exist positive scalars $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$ such that

$$
\hat{T}\left(\vec{v}_{i}\right)= \begin{cases}\sigma_{i} \vec{u}_{i}, & \text { if } 1 \leq i \leq r  \tag{3}\\ 0, & \text { if } i>r\end{cases}
$$

- Definition: the eigenvalues of $\hat{T}^{*} \hat{T}$ is called the singular values.
- Theorem 6.27 (SVD Theorem for Matrices): $\overline{\bar{A}}_{m \times n}=\overline{\bar{U}}_{m \times m} \overline{\bar{\Sigma}}_{m \times n} \overline{\bar{V}}_{n \times n}^{*}$
- Theorem 6.28 (Polar Decomposition): For any square matrix $\overline{\bar{A}}$, there exists a unitary matrix $\overline{\bar{W}}$ and a positive semidefinite matrix $\overline{\bar{P}}$ such that $\overline{\bar{A}}=\overline{\bar{W}} \overline{\bar{P}}$. Furthermore, if $\overline{\bar{A}}$ is invertible, then the representation is unique.
- Definition: Pseudoinverse (or Moore-Penrose generalized inverse): Let $\overline{\bar{A}}_{m \times n}$, there exists $\overline{\bar{B}}_{n \times m}$ such that $\left(\hat{L}_{A}\right)^{\dagger}: F^{m} \rightarrow$ $F^{n}$, i.e., $\overline{\bar{B}}=\overline{\bar{A}}^{\dagger}$.
- Theorem 6.29: $\overline{\bar{A}}_{n \times m}^{\dagger}=\overline{\bar{V}}_{n \times n} \overline{\bar{\Sigma}}_{n \times m}^{\dagger} \overline{\bar{U}}_{m \times m}^{*}$, with the singular values $1 / \sigma_{i}$.
- Lemma: $\hat{T}^{\dagger} \hat{T}$ is the orthogonal projection of $\mathcal{V}$ on $N(\hat{T})^{\perp}$.
- Lemma: $\hat{T} \hat{T}^{\dagger}$ is the orthogonal projection of $\mathcal{W}$ on $R(\hat{T})^{\perp}$.
- Theorem 6.30: Consider $\overline{\bar{A}} \vec{x}=\vec{b}$, then $\vec{z}=\overline{\bar{A}}^{\dagger} \vec{b}$ has the following properties.

Section 7.1-7.2: Jordan canonical form

- Jordan block $\overline{\bar{A}}_{i}$ with the corresponding eigenvalue $\lambda_{i}:[\hat{T}]_{\beta}=\left(\begin{array}{cccc}\overline{\bar{A}}_{1} & \overline{\bar{O}}^{\prime} & \ldots & \overline{\bar{O}} \\ \overline{\bar{O}} & \overline{\bar{A}}_{2} & \ldots & \overline{\bar{O}} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \dot{\bar{O}} & \dot{\bar{O}} & & . \\ \overline{\bar{A}}_{n}\end{array}\right)$
- Definition: generalized eigenvector of $\hat{T}$ corresponding to $\lambda$ if $(\hat{T}-\lambda \hat{I})^{p}(\vec{x})=0$ for some positive integer $p$
- Definition: generalized eigenspace of $\hat{T}$ corresponding to $\lambda$, denoted $K_{\lambda}=\left\{\vec{x} \in \mathcal{V}:(\hat{T}-\lambda \hat{I})^{p}(\vec{x})=0\right\}$
- Theorem 7.1: (a) $K_{\lambda}$ is $\hat{T}$-invariant subspace of $\mathcal{V}$ containing $E_{\lambda}$; (b) For any scalar $\mu \neq \lambda$, the restriction of $\hat{T}-\mu \hat{I}$ to $K_{\lambda}$ is one-to-one.
- Theorem 7.2: (a) $\operatorname{dim}\left(K_{\lambda}\right) \leq m$; (b) $K_{\lambda}=N\left((\hat{T}-\lambda \hat{I})^{m}\right)$, with multiplicity $m$.
- Theorem 7.3: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of $\hat{T}$, then for every $\vec{x} \in \mathcal{V}$, there exists vectors $\vec{v}_{i} \in K_{\lambda_{i}}, 1 \leq$ $i \leq k$, such that $\vec{x}=\vec{v}_{1}+\vec{v}_{2}+\ldots \vec{v}_{k}$.
- Let $\beta_{i}$ be an ordered basis for $K_{\lambda_{i}}$, then
(a) $\beta_{i} \cap \beta_{j}=\emptyset$ for $i \neq j$
(b) $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$ is an ordered basis for $\mathcal{V}$
(c) $\operatorname{dim}\left(K_{\lambda_{i}}\right)=m_{i}$ for all $i$
- Definition: the order set $\left\{(\hat{T}-\lambda \hat{I})^{p-1}(\vec{x}),(\hat{T}-\lambda \hat{I})^{p-2}(\vec{x}), \ldots,(\hat{T}-\lambda \hat{I})(\vec{x}), \vec{x}\right\}$ is called a cycle of generalized eigenvectors of $\hat{T}$ corresponding to $\lambda$, with the length of the cycle $p$.
- Example: $\overline{\bar{A}}_{i}=\left(\begin{array}{ccccccccc}\lambda_{i} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_{i} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_{i} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_{i} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_{i} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_{i} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{i} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{i} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{i}\end{array}\right)$
- Theorem 7.11: Let $\overline{\bar{A}}$ and $\overline{\bar{B}}$ be $n \times n$ matrices, each having Jordan canonical forms computed according to the conventions. Then, $\overline{\bar{A}}$ and $\overline{\bar{B}}$ are similar iff they have (up to an ordering of their eigenvalues) the same Jordan canonical form.

