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1. Introduction
Over the past few decades, a great deal of nonlinear optical 
properties have been extensively investigated via the manipu-
lation of quantum coherence and quantum interference. The 
motivation of such studies lies in the considerable potential 
applications, such as electromagnetically induced transpar-
ency (EIT) [1–5], lasing without population inversion [6, 7], 
enhanced nonlinearity [8–10] and Raman gain process [11, 
12]. Associated with these nonlinear optical properties, a 
variety of interesting optical phenomena based on the quan-
tum coherence and quantum interference effects have been 
demonstrated for optical solitons [13, 14], optical bistabil-
ity (OB) and optical multistability (OM) [15], and the multi-
wave mixing process [16–18]. In particular, numerous groups 
[19–25] have paid much attention to the multi-wave mixing 
process in EIT media, which have given rise to wide range 
of applications in diverse fields, including the high-efficiency 
generation of short-wave length coherent radiation, nonlin-
ear spectroscopy with low-light intensity, quantum single-
photon nonlinear optics and quantum information science 

[16–18, 26–35]. As an example, Deng et al [28] proposed a 
multi-wave mixing scheme by the ultraslow propagation of 
a pump field based on the dual EIT, and gained the enhanced 
conversion efficiency. Then, Wu and coworkers [27] analysed 
a four-wave mixing (FWM) scheme in a double-Λ system in 
the ultraslow propagation regime and the maximum FWM 
efficiency was greater than 25%. More recently, Sun et al [25] 
suggested and achieved a highly efficient FWM scheme in an 
asymmetric double quantum well structure with resonant tun-
neling. However, the low conversion efficiency for multi-wave 
mixing has so far been restricted to its applications.

On the other hand, the semiconductor quantum wells 
(SQWs) appear to be a good candidate for providing large 
electric dipole moments based on intersubband transitions 
(ISBTs), due to the small effective electron mass, high non-
linear optical coefficient, and great flexibility in device 
design by choosing the materials and structure dimensions. 
Specifically, the SQW system has the more accessible cross 
coupling between optical transitions, which arises from two 
transitions between one ground state and two closely spaced 

Laser Physics Letters

Giant enhanced four-wave mixing efficiency 
via two-photon resonance in asymmetric 
quantum wells

Shaopeng Liu1, Wen-Xing Yang1,2, Zhonghu Zhu1 and Ray-Kuang Lee2

1 Department of Physics, Southeast University, Nanjing 210096, People’s Republic of China
2 Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan

E-mail: wenxingyang2@126.com

Received 17 July 2015
Accepted for publication 22 July 2015
Published 12 August 2015

Abstract
We propose an efficient four-wave mixing (FWM) scheme in asymmetric semiconductor 
quantum wells (SQWs) via two-photon resonance. By using the coupled Schrödinger–
Maxwell formalism, we derive explicitly the corresponding analytical expressions of the inter-
probe pulse and generated FWM field in the linear regime under the steady-state condition. 
With the aid of cross coupling between one ground state and two closely adjacent excited 
states, the efficiency of the generated FWM field is found to be significantly enhanced, up to 
60%. More interestingly, a wide region of the maximum FWM efficiency is demonstrated as 
the ratio of transition dipole moments is within the values ranging from 1.1 to 1.3, which can 
be maintained for a certain propagation distance (i.e. 100 μm).

Keywords: four-wave mixing, semiconductor quantum wells, two-photon resonance

(Some figures may appear in colour only in the online journal)

S Liu et al

Giant enhanced four-wave mixing efficiency via two-photon resonance in asymmetric quantum wells

Printed in the UK

095202

LPLABC

© 2015 Astro Ltd

2015

12

Laser Phys. Lett.

LPL

1612-2011

10.1088/1612-2011/12/9/095202

Letters

9

Laser Physics Letters

Astro Ltd

JW

1612-2011/15/095202+8$33.00

doi:10.1088/1612-2011/12/9/095202Laser Phys. Lett. 12 (2015) 095202 (8pp)

mailto:wenxingyang2@126.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1612-2011/12/9/095202&domain=pdf&date_stamp=2015-08-12
publisher-id
doi
http://dx.doi.org/10.1088/1612-2011/12/9/095202


S Liu et al

2

excited states coupling by a continuous-wave (cw) control 
field. This cross coupling can modify the linear and nonlinear 
optical responses of another probe pulsing transition and trig-
ger a strong coherence between the two closely spaced excited 
states. To the best of our knowledge, although the cross cou-
pling has been applied to investigating slow dark optical 
solitons [36], a significant gain [37] and enhanced Kerr non-
linearities [38]; the enhanced multi-wave mixing scheme in 
asymmetric quantum wells by cross coupling between optical 
transitions has been unexplored.

In this paper, we propose and analyse a highly efficient 
FWM scheme in a five-subband SQW configuration. By solv-
ing the coupled Schrödinger–Maxwell equations, we obtain 
the corresponding explicit analytical expressions for the probe 
pulse, the generated FWM pulse field, the phase shifts and 
absorption coefficients, as well as the conversion efficiency of 
the FWM. Differently to the previous scheme, we implement 
a two-photon resonance scheme to induce FWM processes 
driven by one weak probe pulse interacting with two cw pump 
fields. Owing to the existence of cross coupling between opti-
cal transitions, a novel wave-mixing channel may be opened 
and the maximum FWM conversion efficiency can be dramat-
ically enhanced, up to 60%. Last but not least, a wide region 
of the maximum FWM efficiency is demonstrated as the ratio 
of transition dipole moments is within the values ranging from 
1.1 to 1.3, which can be maintained for a certain propagation 
distance (i.e. 100 μm).

2. The theoretical model and basic equations

The SQW structure with the relevant band energy levels 
and wave functions, which is associated with intersubband 
transitions(ISBTs), is shown in figure 1. The material of the 
SQW structure can be demonstrated as follows. The left shal-
low well and right deep well consist of an Al0.04Ga0.96As layer 
with a thickness of 11.0 nm and a 9.5 nm GaAs layer, which 
are separated by a 3.8 nm Al0.4Ga0.6As potential barrier. Both 
the left side of shallow well and the right side of deep well are 
Al0.4Ga0.6As potential barriers. The eigenenergies of the five 
conduction subbands can be obtained by solving the effec-
tive mass Schrödinger equations. Thus, the energies of the two 
ground subbands 1  and 2  are obtained as E1   =   34.5 meV and 
E2   =   62.3 meV, respectively. Two closely spaced delocalised 
subbands 3  and 4  with the eigenenergies E3   =   135.5 meV 
and E4   =   141.5 meV are separated by the splitting Δ2  (see 
figure 1(b)), which lies in between the two ground subbands 
and the subband 5 . The energy of second excited subband 5  
is 296.3 meV in the right deep well. As shown in figure 1(a), 
the dashed lines represent the relevant energy levels while the 
solid curves show the corresponding wave functions for the 
five subbands. The SQW system is driven by a weak probe 
pulse (central frequency ωp and wave vector kp) via the excited 
subbands 3  and 4 , while 3  and 4  are coupled with the sub-
bands 2  and 5  by two continuous-wave (cw) control fields 
(central frequencies ωc1, ωc2 and wave vectors kc1, kc2 ), then 
generates a FWM pulse field (central frequency ωm and wave 
vector km). The process based on IBTS contains the transitions 

↔1 3 , ↔1 4 , ↔2 3 , ↔2 4 , ↔2 5  and ↔5 1 . 
In the present analysis, we use the following conditions: (1) to 
reduce the electron–electron effects, the quantum well struc-
ture is designed with a low electron sheet density, so that it is 
reasonable to neglect the electron–electron interactions; (2) 
all the subbands have the same effective mass.

In the interaction picture, with the rotating-wave approxi-
mation and the electric-dipole approximation, the interac-
tion Hamiltonian of the system under study can be written as 
(ℏ = 1):

ℏ = (Δ − Δ ) + (Δ − Δ)

+ (Δ + Δ) + (Δ + Δ − Δ )
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where ( ) ωΔ = − −+ Ep
E E

p2 1
3 4 , ( ) ωΔ = − −+ Ec

E E
c1 2 2 1

3 4  and 

ωΔ = − −E Ec c2 5 2 2 denote the corresponding field detunings, 
while Δ = −E E2 4 3 represents the energy splitting between 
the subbands 3  and 4 , in which ω ( = )i p c c m, 1, 2,i  are the 
optical frequencies of the relevant optical fields and kj(j  =  p, 
c1, c2, m) are the wave vectors of the probe pulse, two con-
tinuous wave laser fields and the generated FWM field. 
Ω ( = )n p c c m, 1, 2,n  are one-half Rabi frequencies for the rele-
vant laser-driven intersubband transitions, i.e. μΩ = ℏE /2p p41 , 

μΩ = ℏE /2c c1 42 1 , μΩ = ℏE /2c c2 52 2  and μΩ = ℏE /2m m51 , while 
μ μ=g /31 41 and μ μ=f /32 42 represent the ratios of the transi-

tion dipole moments between the relevant subbands, where 
μ ( = − ≠ )i j i j, 1 5;ij  denote the dipole moments for the transi-
tion between subbands ↔i j  and Ep, c1, c2, m are the slowly 
varying electric field amplitudes of the corresponding fields.

We assume that the wave function of the system  
is Ψ = + + + +( − )⋅ ⋅ ⋅A A A A A1 e 2 e 3 e 4k k r k r k r
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i

5
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( − + )⋅e 5k k k ri p c c1 2 , where ( = − )A j 1 5j  means the time-dependent  
probability amplitudes of the particle in the corresponding 
subbands. By substituting Ψ  into the Schrödinger equa-
tion  ∂Ψ ∂ = Ψt Hi / I

int , the equations of motion for the probabil-
ity amplitude can be written as 

(2)

∂
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γ= (Δ + Δ − Δ ) −d ic p c5 2 1 5. The δ = − + −k k k k kp c c m1 2   
denotes the phase mismatching factor. The decay rates can 
be phenomenologically included in the above equations. In 
SQW, the total decay rates γi of subband i  comprise the popu-
lation decay rates γil and the pure dipole dephasing rates γid, 
i.e. γ γ γ( = − ) = +i 1 5i il id, where the population decay rates γil 
are primarily due to the longitudinal optical photon emission 
events at low temperature and the pure dipole dephasing rates 
γid are assumed to be a combination of quasi-elastic interface 
roughness scattering or acoustic photon scattering. Moreover, 
the dipole transition rate from subband 2  to 1  is very small 
because of the high inter-well barrier, i.e. γ γ= d2 2 .

In order to predict correctly the propagation of the input 
probe pulse and the generated FWM field, the probability 
amplitudes of the above equations (2)–(6) must be simultane-
ously solved with Maxwells equation in a self-consistent man-
ner. Under the slowly varying amplitude approximation, the 
input probe and the generated FWM field propagating along 
the direction of z (i.e. δ δ⋅ = ⋅k r k z) evolve according to

κ
∂Ω
∂

+
∂Ω
∂

= ( + ) *
z c t

gA A A
1

i ,
p p

p 3 4 1 (7)
 

(8)

For the sake of simplicity, we assume phase mismatch-
ing factor δ =k 0. The parameters κ π ω μ= ∣ ∣ ℏc2 N /p p 31

2  and 
κ π ω μ= ∣ ∣ ℏc2 N /m m 51

2  are the propagation constants with the 
electron concentration N. The standard method of the weak nonlin-
ear theory can be usefully applied to solve the nonlinear equations, 
that is, we assume the Rabi frequency Ωp of the input probe pulse 
is comparatively very weak ( Ω ≪ Ωp c c1, 2 ) so that almost all the 
electrons will remain in subband ∣1  i.e. ≃A 11 . Simultaneously, 
we preform the Fourier transformations for equations (2)–(8),

∫
π

ω ω( ) = ( ) =ω
∞

∞
−A t a j

1

2
e d , 2, 3, 4, 5,j j

ti (9)
 

(10)

with ω being the Fourier transform variable, we have

ω( − ) + Ω* + Ω* + Ω* =d a f a a a 0,c c c2 2 1 3 1 4 2 5 (11)
 

(12)

 (13)
 

(14)

 
(15)

 
(16)

where a2−5 and Λp and Λm are the Fourier transforms of A2−5, 
ΩP and Ωm, respectively. The solutions of the equations (11)–
(14) are noted
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here we have introduced the definitions Dp1(ω), Dm1(ω), 
Dp2(ω), Dm2(ω) and D(ω), which can be expressed as Dp1(ω) 
= [(ω – d3) + g2(ω – d4)][(ω – d2)(ω – d5)  −  Ωc2

2 ]  −  Ωc1
2 (ω – d5) 
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2  + f 2(ω – d4)(ω – d5)Ωc1

2   −   
(ω – d2)(ω – d3)(ω – d4)(ω – d5). Making the initial condi-
tion of the probe pulse and generated FWM field, i.e. Λp(0,ω) 
and Λm(0,ω) = 0 and applying the equations (15) and (16) and 
equations (17) and (18), we obtain the solutions as follows
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Figure 1. (a) Schematic band diagram of the asymmetric semiconductor quantum wells with a deep well and a shallow well, which mix to 
create five subbands j  (  j  =  1–5). The related energy levels and the corresponding wave functions are illustrated by the dashed and solid 
lines, respectively. (b) Schematic of the relevant energy levels with a five-subband j  configuration. Accurately, the ground state 1  is driven 
by a weak probe pulse (frequency ωp and Rabi frequency Ω2 p) via excited subbands 3  and 4 , while the 3  and 4  are coupled with the 
subbands 2  and 5  by two continuous-wave (cw) control fields (frequencies ωc1, ωc2 and Rabi frequencies Ω2 c1, Ω2 c2).
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ω ω ωΛ ( ) = Λ ( ) ( )( − )ω ω( ) ( )+ −z S, 0, e e ,m p
zK zKi i (20)

where

ω ω ω κ ω κ ω
ω

ω ω
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with ω ω κ ω κ ω ω κ κ( ) = ( ( ) − ( ) ) + ( ) ( )G D D D D4m m p p m p m p2 1
2

1 2 . 
ωΛ ( )0,p m,  are the initial conditions for the probe pulse and 

the generated FWM field at the entrance of the SQW struc-
tures z  =  0. Equations (19) and (20) demonstrate clearly that 
there exist two modes ( ±K  modes) described by the linearised 
dispersion relations ω= ( )+K K  and ω= ( )−K K , respectively. 
In the following, we focus on the adiabatic regime, where the 
expressions of the probe pulse and the generated FWM field 
are expanded into a rapid conversion power series around 
the centre frequencies ωp s,  (i.e. ω = 0). In order to analyse 
the expressions of the probe pulse and the generated FWM 
field, the approximation is applied by neglecting the high 
order terms, i.e. ω( )O 2  in ω( )±K  and ω( )O  in ω( )S , respec-
tively. Generally, [ ( )]±KRe 0  represent the phase shifts per 
unit length, and [ ( )]±KIm 0  are the absorption coefficients. 
The group velocities ±Vg  of the two modes are determined by 

= [ ]± ±
( )V K1/Reg
1 . Subsequently, we applied an inverse Fourier 

transform to Λp m,

∫
π

ω ω ωΩ ( ) = (− )Λ ( )
−∞

∞
z t t z,

1

2
exp i , d .p m p m, ,

We can achieve the linearised results of the probe pulse and 
the generated FWM field

ω η ηΩ ( ) = Ω ( ) ( ) − Ω ( ) ( )+ +
( )

− −
( )+ −z U U, 0, 0 e 0, 0 e ,p p

zK
p

zKi 0 i 0

 (21)

ω η ηΩ ( ) = ( )(Ω ( ) − Ω ( ) )+
( )

−
( )+ −z S, 0 0, e 0, e ,m p

zK
p

zKi 0 i 0 (22)

where η = −± ±t z V/ g . Ω ( ) ≡ Ω ( = )t z t0,p p  is the initial probe 
pulse at z  =  0. The above two equations (21) and (22) are the 
accurate expressions that govern the propagation dynamics of 
the probe pulse and the generated FWM field in the present 
SQW system. In such a feasible case, the enhancement of the 
FWM signal can be achieved by properly adjusting the system 
parameters via cross coupling between optical transitions.

3. The numerical results and discussions

In the case of high-quality SQW, for temperatures up to 10 
K [39], the electric density keeps below 1024m−3. The typi-
cal decay parameters are chosen as γ = × −2 102

5 meV, 
γ γ= = 7.8l l3 4  meV, γ = 3l5  meV, γ γ= = 1.2d d3 4  meV and 
γ = 1d5  meV, as a result, we can obtain γ γ= = 93 4  meV and 
γ = 45  meV. In addition, we choose Δ = Δ = Δ = 0p c c1 2  
and κ κ= = 3p m  μm−1 meV. Here, the two-photon reso-
nance occurs in the intersubband transition ∣ ↔ ∣1 2  (i.e. 
Δ + Δ = 0p c1 ). Within these parameter regimes, we plot the 
amplitudes of the probe pulse and the generated FWM field 
versus the depth z of penetration in the SQW system with the 
different ratio values of the transition dipole moments in fig-
ure 2. For the one case where the ratio value of the transition 
dipole moments g   =   1.2 in figure 2(a), it can be seen that the 
amplitude of the probe pulse decreases monotonically with 
the increase in the propagation distance z, while the generated 
FWM field increases monotonically. When the propagation 
distance z continues to extend, the amplitudes of the gener-
ated FWM fields reach the saturation value and are indepen-
dent of the propagation z. These results can be explained by 
the behaviour of the multiphoton quantum destructive inter-
ference between the two different excitation channels: cou-
pling excitation pathways ∣ → ∣1 3 , ∣ → ∣1 4  and feedback 
excitation pathways ∣ → ∣1 3 , ∣ → ∣1 4  mediated by ∣5  [35]. 
Physically, when the amplitude of the generated FWM field 
reaches a saturation value whereby the generated FWM field 
is sufficiently intense, an efficient feedback excitation path-
way to the subband ∣5  becomes important, which is π out of 
phase with respect to the coupling excitation pathway. Then 

Figure 2. The amplitudes of the probe pulse and the generated FWM field versus the depth z of penetration in the SQW system with the 
different ratio values of transition dipole moments: (a) g   =   1.2, (b) g   =   1.6. The other parameter values are γ = × −2 102

5 meV, γ γ= = 93 4  
meV, γ = 45  meV, Δ = 3.5 meV, Δ = Δ = Δ = 0p c c1 2 , κ κ= = 3p p  μm−1 meV and ∣Ω ∣ = ∣Ω ∣ = 20c c1 2  meV.
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the amplitude of the generated FWM field was suppressed 
due to the feedback excitation pathway leading to multi-
photon destructive interference. For the other case where 
the ratio value of the transition dipole moments g   =   1.6 in 
figure 2(b), the two amplitudes of the probe pulse and the 
generated FWM field show an obvious gap and attenuation 
after a certain propagation distance. As a matter of fact, the 
linear absorption–dispersion properties of the SQW medium 
play an important role in the above phenomenon. When the 
ratio value of the transition dipole moment g is far from f , 
the according absorption increases rapidly, so that the ampli-
tudes of the probe pulse and generated FWM field decay 
rapidly.

Both equations (21) and (22) can demonstrate that the two 
modes (i.e. ±K  modes) exist in the SQW system, which are 
contained in the probe pulse and FWM field. By comparing 
the two absorption coefficients α = [ ( )]± ±KIm 0 , the key con-
sequence is that one of the modes always decays much faster 
than the other, resulting in the neglect of the fast decaying 
mode after a short propagation distance. To give a clear illus-
tration, figure 3(a) plots the absorption coefficient ratio α α− +/  
versus the amplitude ∣Ω ∣c2  of the cw control field, while we 
show the absorption coefficient ratio α α− +/  versus the ampli-
tude ∣Ω ∣c2  for several different ratios g of the transition dipole 
moments in figure 3(b). When the two ratios of the transition 
dipole moments are within appropriate parameter ranges, fig-
ures 3(a) and (b) show directly that the ratio of the absorption 
coefficients increases monotonously with the increase in the 
amplitudes of the two cw pump fields. The absorption coeffi-
cients satisfy α α≪+ −, which can be also obtained in figure 3. 
That is to say, the K  −  mode decays more quickly than the 
K  +  mode, thus the faster variable K  −  can be neglected safely 
after a short characteristic propagation distance. In a word, the 
above approximation method can be implemented, as long as 
the ratio g of the transition dipole moments is confined from 
1.0 to 1.6. In the following discussion, we present all of the 
results under the condition of approximation. This is indeed 
the case for the situations considered here. Specifically, under 
this approximation of neglecting the K  −  mode, the probe 
pulse and generated FWM field Ωp m,  can be rewritten as

Ω ( ) = Ω ( − ) ( ) β α
+

−z t t z V U, 0, / 0 e ,p p g
z zi (23)

Ω ( ) = Ω ( − ) ( ) β α−z t t z V S, 0, / 0 e ,m p g
z zi (24)

where = [ ]+
( )V K1/Reg
1  is the group velocity, α = [ ( )]+KIm 0  

denotes the absorption coefficient, and β = [ ( )]+KRe 0  repre-
sents the phase shift per unit length. On applying the defini-
tion of [27], the efficiency of the generated FWM field can be 

derived, i.e. ρ = ( ) ( )E E/m p
out in , where ( )Em

out  is the electric field 

μ(∣ ∣ = ℏ ∣Ω ∣ ∣ ∣ )E E 4 /m m m
2 2 2

51
2  of the FWM-generated field at 

the exit z  =  L and μ( = ℏ Ω ∣ ∣ )( )E E 4 /p
in

p p
2 2 2

41
2  is the electric 

field of the probe pulse at the entrance z  =  0. According to 
equations (23) and (24), the efficiency has the form,

ρ
μ
μ

κ
κ κ

= =
( Ω Ω )

Ω Ω +
α

( )

( )
−

⎛
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m c c

p m c c
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2

41
2
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2

2
1

2
2

2 2

1
2

2
2 2 2

2 (25)

with γ γ= ( Δ − Δ − − )A gf gfi i3 4  and κ= Ω (Δ − ΔB fm c1
2 2  

)γ γ κ γ γ κ γ+ + − Ω (Δ − Δ + + ) − ( − ) Ωf g g f gi i i i ip c p c3
2

4 2
2 2

3
2

4
2

1
2

5 
By means of the relation μ μ κ ω κ ω=/ /p m m p41

2
51
2 , it is found 

that the expression of the efficiency ρ can be simplified as 
ρ ω ω= ( )α−e /4m

L
p

2 . In the following, we present a few numer-
ical results for the dependence of the generated FWM effi-
ciency on different parameters of the system, as illustrated in 
figures 4–7.

First of all, we will analyse how the amplitudes of the cw 
pump fields modify the efficiency of the generated FWM 
field. In order to demonstrate this explicitly, in figure  4 we 
plot the FWM efficiency ρ as a function of the amplitude ∣Ω ∣c2  
of the cw pump field for the different cw pump field ∣Ω ∣c1  by 
adjusting the ratio value g of the transition dipole moments, 
while keeping all the other parameters fixed. It can be seen 
that the maximum efficiency is achieved under the condition 
∣Ω ∣ = ∣Ω ∣c c1 2  and the maximum efficiencies have exceed 50% 
both figures 4(a) and (b). If our SQW system does not contain 
the subband ∣4 , the scheme is simplified, as in the scheme 
of Wu [27], in which the maximum efficiency of the FWM 
field has just half of our scheme. In other words, the giant 

Figure 3. (a) The ratio of the absorption coefficients α α− +/  versus the amplitude ∣Ω ∣c2  of the cw control field for the ratio of the transition 
dipole moments g  =  1.2 as fixed and the other amplitude ∣Ω ∣ = 10c1  meV, 20 meV and 30 meV. (b) The ratio of the absorption coefficients 
α α− +/  versus the amplitude ∣Ω ∣c2  for the other amplitude ∣Ω ∣ = 20c1  meV as fixed and the ratio of transition dipole moments g  =  1.0, 1.4, 1.6. 
The other parameter values are f   =  1.2, γ = 22  × −10 5 meV, γ γ= = 93 4  meV, γ = 45  meV, Δ = 3.5 meV, Δ = Δ = Δ = 0p c c1 2  and κ κ= = 3p p  
μm−1 meV.
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enhanced FWM efficiency can be observed when the cross 
coupling between optical transitions are included in the asym-
metric quantum wells. This cross coupling driven by two tran-
sitions between one ground and two closely separated excited 
states can induce the two generated FWM processes (i.e. 
∣ → ∣ → ∣ → ∣ → ∣1 3 2 5 1  and ∣ → ∣ → ∣ → ∣ → ∣1 4 2 5 1 ). 
Simultaneously, the new channel is opened to modify the lin-
ear absorption of the SQW medium, which leads to the giant 
enhancement of the FWM efficiency. More interestingly, a 
direct comparison of the results in figures 4(a) and (b) implies 
that the conversion efficiency can be obviously enhanced 
when we go from g  =  1.6 (see figure  4(b)) to g  =  1.2 (see  
figure 4(a)). The reason is that, with the decrease in the ratio 
g of the transition dipole moments, the absorption for the 
FWM-generated field on the intersubband transition ∣ ↔ ∣1 5  
of the electronic medium can be reduced, as is already shown 
in figure 3, which makes the efficiency easily enhanced.

In the following, we show the conversion efficiency ρ ver-
sus the ratio g of the transition dipole moments for different 
energy splitting in figure 5(a). The result verifies clearly that 
the maximum conversion efficiency has a sensitive depend-
ence on the ratio of the transition dipole moments. Moreover, 
a wide region of the maximum FWM efficiency is achieved 
as the ratio of the transition dipole moments is within the 
values ranging from 1.1 to 1.3. For further investigation into 
how the transition dipole moments affect the behaviour of 

the generated conversion efficiency, we plot the conversion 
efficiency ρ of the generated FWM field as a function of the 
two ratios of the transition dipole moments, as shown in fig-
ure  5(b). Both figures  5(a) and (b) demonstrate clearly the 
maximum conversion efficiency ρ is achieved at around the 
ratio of the transition dipole moments g  =   f . The enhance-
ment of the generated FWM signal comes from the cross cou-
pling caused by optical transitions between the ground and 
two closely separated excited states. This cross coupling mod-
ifies the neighbouring transitions and affects the multiphoton 
quantum destructive interference between the two different 
coupling pathways, thus leading to a reduction in the absorp-
tion of the pulsed probe and the generated FWM fields. We 
can conclude that the presence of the cross coupling modifies 
the linear and nonlinear optical responses of the probe pulsing 
transition, as well as the generated FWM process. Finally, a 
highly efficient FWM scheme can be achieved.

In order to further show the effects of the energy splitting 
Δ and the ratio g of the transition dipole moments on the con-
version efficiency of the FWM field, we plot in figure 6 the 
conversion efficiency ρ of the generated FWM field as a func-
tion of the amplitude ∣Ω ∣c2  and the energy splitting Δ. Again, 
the results in figure  6(a) clearly show the maximum FWM 
efficiency is greater than 60%, when the FWM process is 
absolutely opened by an increase in the cw control field ∣Ω ∣c2 . 
Furthermore, when the ratio of the transition dipole moment 

Figure 4. The generated FWM efficiency ρ versus the amplitude ∣Ω ∣c2  for ∣Ω ∣= 10c1  meV, 20 meV and 30 meV: (a) g  =  1.2, (b) g  =  1.6. 
The other parameter values are f   =  1.2, L  =  10 μm, γ = × −2 102

5 meV, γ γ= = 93 4  meV, γ = 45  meV, Δ = 3.5 meV, Δ = Δ = Δ = 0p c c1 2  and 
κ κ= = 3p p  μm−1 meV.

Figure 5. (a) The conversion efficiency ρ of the generated FWM field versus the ratio g of the transition dipole moments for different 
energy splitting Δ = 3.5 meV, Δ = 13.5 meV, Δ = 23.5 meV, Δ = 33.5 meV. (b) The conversion efficiency ρ of the generated FWM field as 
a function of the two ratios of transition dipole moments (i.e g and f ) with Δ = 3.5 meV. The other parameter values are f   =  1.2, L  =  10 μm, 
γ = × −2 102

5 meV, γ γ= = 93 4  meV, γ = 45  meV, Δ = Δ = Δ = 0p c c1 2 , κ κ= = 3p p  μm−1 meV and ∣Ω ∣ = ∣Ω ∣ = 20c c1 2  meV.
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goes from g  =  1.2 to g  =  1.6, as shown in figure 6(b), a similar 
linear increase in the conversion efficiency can be observed 
with an increase in the energy splitting to a certain propaga-
tion distance. Under the condition of two-photon resonance, 
the energy splitting between subbands ∣3  and ∣4  is employed 
to control the linear absorption–dispersion properties of the 
SQW structure, thus affecting the destructive interference 
between the two different coupling pathways induced by the 
cw control field ∣Ω ∣c2 .

According to our analysis, the highly efficient FWM 
scheme may be achieved in the present SQW system via prop-
erly adjusting the system parameters. In particular, we con-
sider the probe pulse at the entrance of the SQW structure has 

the form of a Gaussian pulse shape Ω ( ) = Ω ( ) τ−( )t0, 0, 0 ep p
t / 2

, 
where τ is the pulse width. The conversion efficiency can be 
rewritten as ρ = Ω ( ) Ω ( )z t, / 0, 0m p

2. Therefore, we present the 
numerical results for the analysis of the corresponding conver-
sion FWM efficiency in figure 7. It can be clearly seen that the 
conversion efficiency ρ dramatically keeps its previous value 
as the propagation distance increases in figure  7(a). Based 
on the two-photon resonance, our system can cancel linear 
absorption and reduce the group velocity of the pulse probe 
and the generated FWM field. As a result, such low absorp-
tion and reduced group velocity ensure, respectively, a high 
FWM conversion efficiency and a long interaction time, thus 
leading to the enhanced FWM signal can be maintained for 
a long propagation distance (i.e. 100 μm). In addition, the 

conversion efficiency ρ decreases significantly as the ratio of 
the transition dipole moment g   =   1.6, as shown in figure 7(b). 
The reason for the above results can be qualitatively explained 
as follows, the intersubband transitions ∣ ↔ ∣1 3  and ∣ ↔ ∣1 4  
are suppressed due to the change in the ratio of the transition 
dipole moments leading to an increase in the linear absorp-
tion of the SQW medium, which is also verified in figures 2 
and 3. Furthermore, this might be useful to control the transi-
tion dipole moments, thus the high conversion efficiency of 
the generated FWM field can remain in a long propagation 
distance.

4. Conclusion

In conclusion, we have suggested a giant efficient four-wave 
mixing scheme via two-photon resonance in asymmet-
ric semiconductor quantum wells. Different from quantum 
destructive interference directly driven by the cw control 
field, our scheme is based on cross coupling between optical 
transitions induced by one weak probe pulse interacting with 
two cw pump fields analysed for the enhanced FWM genera-
tion. On applying the Schrödinger–Maxwell formalism, we 
obtain the corresponding analytical expressions of the input 
probe pulse and the generated FWM pulsed field in a linear 
regime under the steady-state condition. Considering the cross 
coupling in the five-subband SQW system, the main advan-
tage of our proposed scheme is that the conversion efficiency 

Figure 6. The conversion efficiency ρ of the generated FWM field as a function of the amplitude ∣Ω ∣c2  and the energy splitting Δ under the 
condition of (a) g  =  1.2; (b) g  =  1.6. The other parameter values are Δ = 3.5 meV, f   =  1.2, L  =  10 μm, γ = × −2 102

5 meV, γ γ= = 93 4  meV, 
γ = 45  meV, Δ = Δ = Δ = 0p c c1 2 , κ κ= = 3p p  μm−1 meV and ∣Ω ∣ = 20c1  meV.

Figure 7. Surface plot of the conversion efficiency ρ as a function of time τt /  and the propagation distance z under the condition of (a) 
g  =  1.2; (b) g  =  1.6. The other parameter values are Δ = 3.5 meV, f   =  1.2, L  =  10 μm, γ = × −2 102

5 meV, γ γ= = 93 4  meV, γ = 45  meV, 
Δ = 3.5 meV, Δ = Δ = Δ = 0p c c1 2 , κ κ= = 3p p  μm−1 meV and ∣Ω ∣ = ∣Ω ∣ = 20c c1 2  meV.
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of FWM field is revealed to be enhanced significantly, up to 
60%. Furthermore, it is worth pointing out that a wide region 
of the maximum FWM efficiency is demonstrated as the ratio 
of the transition dipole moments is within the values ranging 
from 1.1 to 1.3, and the generated FWM signal can be main-
tained for a long propagation distance due to the two-photon 
resonance condition. Finally, employing the advantages of 
flexibility and practicability in the SQW system, our scheme 
provides a new possibility for technological applications in 
such an optical modulated solid-state device.
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