LETTER

3D atom microscopy in the presence of Doppler shift

To cite this article: Rahmatullah et al 2018 Laser Phys. Lett. 15 035202

View the article online for updates and enhancements.
Letter

3D atom microscopy in the presence of Doppler shift

Rahmatullah1,2, You-Lin Chuang2, Ray-Kuang Lee2 and Sajid Qamar1

1 Quantum Optics Lab., Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan
2 Institute of Photonics and Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan

E-mail: sajid_qamar@comsats.edu.pk

Received 23 October 2017, revised 14 November 2017
Accepted for publication 15 November 2017
Published 5 February 2018

Abstract

The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom–field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity \(v \) along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

Keywords: atom microscopy, Doppler shift, standing-wave fields

(Some figures may appear in colour only in the online journal)

Introduction

The quest to achieve precision in position measurement at the atomic scale is not new. However, such measurements are diffraction limited \([1]\) and the spatial resolution achieved is no better than the length scale given by the wavelength of the light field which is used for measurement \([2]\). In spite of the fundamental nature of the problem, recent advances in laser cooling \([3]\), lithography \([4]\), Bose–Einstein condensates \([5]\) and the measurement of the center-of-mass wave function \([6, 7]\) have made it important to obtain precise position information of the atom. Considerable success has already been attained in the achievement of precision of spatial resolution with near- and far-field imaging techniques \([8]\). Further, some schemes have been proposed to obtain structures beyond the diffraction limit using position-dependent dark states for nanoscale resolution fluorescence microscopy \([9]\) and in interferometric lithography \([10]\).

Meanwhile, several proposals have been made to obtain position information of moving atoms using quantum optical methods. In these proposals standing-wave driving fields are used to encode the position information into the intensity pattern via the position-dependent Rabi frequency. In the beginning, several schemes were suggested for position measurement of the atom in 1D \([11–16]\). However, in the last few years, interest has shifted towards 2D atom localization and several schemes have been suggested in this regard \([17–20]\). It is clear that the next objective would be to achieve 3D atom localization. Some progress has already been made and recently a scheme has been proposed for 3D atom localization in a four-level tripod-type atom–field system using three orthogonal standing-wave fields \([21]\), where eight possible positions of the atom within the cubic optical wavelength in 3D space were noticed. The precision of 3D atom localization can further be enhanced via spatial interference in a two-level atomic system \([22]\) and by three-wave mixing \([23]\). In a recent
article, Wang and Yu propose the 3D localization of cold 87Rb atoms with 100% probability via probe absorption in a three-level atomic system [24].

A major limitation of almost all those schemes is that the atom is considered to move through the fields but no Doppler shift is incorporated. In fact, even for a static (cold) atom there is a chance that the atom does not remain perfectly stationary when it is driven by the laser fields. In that case, the motion, which could be modeled as a Gaussian velocity distribution, would affect the precise position measurement of the single atom due to Doppler broadening.

In this article, we examine hot rubidium (87Rb) atoms and propose a scheme for a precision enhancement in the position measurement of single atoms in 3D space in the presence of Doppler broadening. Initially, we consider a three-level Λ-type atom–field configuration to obtain precise spatial information of an atom via an upper-level population ignoring the Doppler shift, which is in accordance with earlier work [24]. However, considering a more realistic experimental realization, we incorporate the effect of Doppler broadening, which reduces, significantly the precision of position measurement of a single atom. To address this problem, we apply an external microwave field corresponding to the atomic transition $|2\rangle \leftrightarrow |3\rangle$. The Λ-type atom–field configuration then becomes a Δ-type configuration and we observe that the Doppler shift is significantly reduced via control of the microwave field. This implies that the precision of position measurement in 3D space can be maintained even in the presence of a Doppler shift.

Theory and discussion

In figure 1, we show the schematic of a three-level atom having one upper level ($|1\rangle$) and two lower levels ($|2\rangle$ and $|3\rangle$). The atom interacts with a standing-wave field E_{xy}, which is the superposition of three orthogonal standing-wave fields and couples the atomic transition $|1\rangle \leftrightarrow |3\rangle$. To measure the upper-level population, a weak probe laser field E_p is applied which couples the atomic transition $|1\rangle \leftrightarrow |2\rangle$. The resulting atom–field configuration is a Λ-type one, which is experimentally realizable assuming the transition $5S_{1/2} \rightarrow 5P_{3/2}$ in 87Rb. The energy levels can be considered as $|1\rangle = |5P_{3/2}, F = 2\rangle$, $|2\rangle = |5S_{1/2}, F = 2\rangle$, and $|3\rangle = |5S_{1/2}, F = 1\rangle$ [25], which have been used for EIT [26] and for 3D atom localization [24]. An additional microwave field E_m is applied to the atomic transition $|2\rangle \leftrightarrow |3\rangle$, controlling the damaging effects of Doppler broadening. The atom–field configuration thus becomes a Δ-type one (see figure 1). The corresponding Rabi frequencies are $\Omega_x e^{i\phi_x}, \Omega_y e^{i\phi_y}$, and $\Omega_z e^{i\phi_z}$, where ϕ_x, ϕ_y, and ϕ_z are the initial phases of the probe, standing-wave and microwave fields. We consider Ω_z position-dependent.

The standing-wave field E_{xy} is considered as the superposition of three orthogonal standing-wave fields, i.e. E_x and E_y along the x and y directions, respectively. We also assume that each standing-wave field is a superposition of the other two standing-wave fields along the corresponding directions. We define the position-dependent Rabi frequency as $\Omega_{xy} = \Omega_x + \Omega_y + \Omega_z$, with

$$
\Omega_{xy} = \Omega_x = \Omega_1 [\sin(k_1 x + \eta) + \sin(k_3 x)], \quad \Omega_{xy} = \Omega_y = \Omega_2 [\sin(k_2 y + \zeta) + \sin(k_4 y)], \quad \Omega_{xy} = \Omega_z = \Omega_3 [\sin(k_5 z + \varphi) + \sin(k_6 z)],
$$

where $k_i = 2\pi/\lambda_i$ ($i = 1, 2, 3, 4, 5, 6$) denotes the wave-vectors having the wavelengths λ_i ($i = 1, 2, 3, 4, 5, 6$) of the corresponding standing-wave fields. The parameters η, ζ, and φ are the phase shifts associated with the standing-wave fields with wave-vectors k_1, k_2 and k_3, respectively.

The interaction picture Hamiltonian for the system in the dipole and rotating-wave approximation can be written as

$$
H = -\hbar \{ \Omega_x e^{i\Delta_x} |1\rangle \langle 2| + \Omega_y e^{i\Delta_y} |1\rangle \langle 3| + \Omega_z e^{i\phi} |3\rangle \langle 2| + H.c. \},
$$

where $\Delta_x = \omega_{12} - \nu_x$ and $\Delta = \omega_{13} - \nu$ are the detuning associated with the probe and standing-wave fields corresponding to the atomic transitions $|1\rangle \leftrightarrow |2\rangle$ and $|1\rangle \leftrightarrow |3\rangle$, respectively, and $\phi = \phi_m + \phi_x - \phi_p$ is the relative phase of the standing-wave, probe and microwave fields. The equations of motion for the corresponding density matrix elements can be written as

$$
\dot{\rho}_{11} = -(\Gamma_{12} + \Gamma_{13}) \rho_{11} - i\Omega_x (\rho_{21} - \rho_{12}) - i\Omega_{xy} (\rho_{31} - \rho_{13}),
\dot{\rho}_{22} = -(\Gamma_{21} + \Gamma_{23}) \rho_{22} + i\Omega_x (\rho_{12} - \rho_{21}) + i\Omega_{xy} (e^{-i\phi} \rho_{23} - e^{i\phi} \rho_{32}),
\dot{\rho}_{33} = -(\Gamma_{31} + \Gamma_{32}) \rho_{33} + i\Omega_x (\rho_{31} - \rho_{13}) - i\Omega_{xy} (e^{i\phi} \rho_{32} - e^{-i\phi} \rho_{23}),
\dot{\rho}_{23} = i(\dot{\Delta}_x + \dot{\gamma}_{32}) \rho_{23} + \Omega_x \rho_{31} - i\Omega_{xy} \rho_{21} - i\Omega_{xy} (e^{i\phi} \rho_{23} - e^{-i\phi} \rho_{32} - \rho_{31}),
\dot{\rho}_{31} = i(\dot{\Delta}_x + \dot{\gamma}_{31}) \rho_{31} - i\Omega_x \rho_{12} - i\Omega_{xy} \rho_{32} + i\Omega_{xy} e^{i\phi} \rho_{23}.
$$

Here Γ_{ij} ($ij \in 1, 2, 3, i \neq j$) is the decay rate from level $|i\rangle$ to level $|j\rangle$, where $\gamma_{32} = \Gamma_{32}/2, \gamma_{21} = (\Gamma_{12} + \Gamma_{13})/2$, and $\gamma_{31} = (\Gamma_{32} + \Gamma_{13} + \Gamma_{12})/2$.

Our objective is to obtain position information of the atom via absorption of the probe field, which is directly related to the upper-level population ρ_{11}. Initially, the atom is considered to be in the ground state $|2\rangle$ and when the probe field is absorbed the atom is excited to the upper-level $|1\rangle$. The probability of an upper-level population can thus be termed the conditional position probability of the atom in 3D space. To understand the dependence of the upper-level population on...
certain parameters like Ω_p, Ω_{yz}, Ω_m and Δ_p, we use equation (3) and calculate the analytical expression for the upper-level populations:

$$p_{11}(\Delta_p) = \frac{\Omega_p^2 (\Delta_p - \Delta)^2}{(\Delta_p - \Delta)^2 - (\gamma_1^2 + \gamma_2^2)(\Delta_p - \Delta)^2},$$

with $\Gamma_{32} = 0$ and $\gamma_2 = \gamma_3$.

We consider $p_{11}(\Delta_p)$ as the filter function which determines the 3D conditional position probability distribution of the atom. The first term in equation (4) corresponds to the EIT phenomenon while the second term, which involves the microwave field, describes the gain process [27]. The 3D conditional position probability distribution can be controlled via the interference of the two terms. It is well known that for the Λ-type atom—field configuration coherent population trapping occurs for the two-photon resonance condition and the ground-level population never goes to zero [28]. We, however, consider that the two detuning parameters Δ and Δ_p are far detuned from each other. Thus, we avoid the two-photon resonance condition, and as a result we can obtain the maximum population of the excited level [1]. For $\Delta = 0$, the probe detuning condition becomes $\Delta_p = \Omega (\sin k_x + \sin k_y + \sin k_z)$ when $\xi = \zeta = \phi = 0$ and $k_i = k (i = 1, 2, 3, 4, 5, 6)$, which may lead to the maxima in the 3D conditional position probability distribution. One can notice that the position probability distribution of the atom in 3D space, which is conditioned upon the measurement of the upper-level population or probe absorption and leads to the 3D spatial measurement of the atom, is directly related to the probe field detuning. However, we are considering a general case and carrying out a numerical analysis of the position measurement of a moving atom, i.e. without considering any approximation on Ω_p or $\Omega_i (i = 1, 2, 3)$.

We first ignore the effect of a Doppler shift and show the best possible spatial measurement of a single atom using a Λ-type atom—field configuration. The parameters we select are $\Omega = 2.3 \Gamma$, $\Omega_p = 0.1 \Gamma$, $\Omega_m = 0$ ($\Omega_p = 0$), $\Delta = 0$, $\Delta_p = 13.8 \Gamma$, $k_1 = k_2 = k_3 = 0.8 \pi$, $\xi = \zeta = \phi = \pi / 8$, $\Gamma_{12} = \Gamma_{13} = 0.5 \Gamma$ and $\Gamma_{32} = 0$ ($\Gamma = 6 \text{MHz}$). In the absence of the microwave field ($\Omega_m = 0$), the second term in equation (4) becomes zero and the 3D conditional position probability distribution of the atom only depends on the EIT phenomenon. The values for the decay rate Γ and Rabi frequencies correspond to [26]. Following the same procedure utilized in [7, 16, 20], we consider slightly different wavelengths and the phase shifts associated with the standing-wave fields. The plot of the filter function $p_{11}(\Delta_p)$ versus the normalized positions x, y, and z shows a single peak, which is reflected as a sphere in the xyz space (see figure 2(a)). The sphere describes the 3D position probability distribution of the atom and shows the possible position of the atom within a cubic optical wave-length. The size of the surface of the sphere defines the full width at half maximum in 3D space.

To determine where exactly the center of the sphere is located, we show the 2D views of the filter function $p_{11}(\Delta_p)$ in figures 2(b)–(d). From these figures, we can observe that the sphere is centered at $\pi/2$, $\pi/2$, $\pi/2$, which determines the position of the atom in the 3D xyz space.

![Figure 2](image-url)
the atom. To obtain the upper-level population in a Doppler-broadened medium, velocity-dependent \(\rho_{11}(\Delta_p + k \nu) \) should be integrated over the Maxwell–Boltzmann distribution for the atomic velocities. In the presence of a Doppler effect, the upper-level population can be written as

\[
\rho_{11}(d) = \frac{1}{\sqrt{2\pi}D} \int_{-\infty}^{\infty} \rho_{11}(\Delta_p + k \nu) e^{-\nu^2/2D^2} d\nu,
\]

where \(D = \sqrt{k_B T M} \) is the Doppler width. \(k_B \), \(T \) and \(M \) are the Boltzmann constant, absolute temperature and mass of the atom, respectively. We call \(\rho_{11}(d) \) the Doppler-broadened filter function for the 3D conditional position probability distribution.

In figure 3, we plot the Doppler-broadened 3D filter function versus the normalized positions \(\kappa_x, \kappa_y \) and \(\kappa_z \) in the \(xyz \) space for two different values of the Doppler width, i.e. \(D \) equal to (a) 0.3\(\Gamma \) and (b) \(\Gamma \), while keeping the other parameters the same as in figure 2(a). The precision of the position of the atom reduces as we introduce the Doppler effect and a second sphere starts appearing. The size of the second sphere, which was not present in the absence of Doppler broadening, increases as we increase the value of the Doppler width (see figures 3(a) and (b)). This shows that the precision of position measurement of a single atom reduces significantly in the presence of the Doppler shift. This implies that for a better spatial measurement of the atom with the best possible spatial resolution, one needs to have a Doppler-free spectroscopy, which seems impossible unless one has ultra-cold atoms. Another possibility one can think of is to eliminate the Doppler shift if the probe field is acting along the atoms. Another possibility one can think of is to eliminate the oscilloscope, which seems impossible unless one has ultra-cold spatial measurement of the atom with the best possible presence of the Doppler shift. This implies that for a better measurement of a single atom reduces significantly in figures 3(a) and (b)). This shows that the precision of position measurement of the moving atom reduces even in the presence of a Doppler shift [31]. Therefore, in the proposed model for atom microscopy, one of the spheres can vanish according to the suppression of EIT. This is evident from equation (4): when the microwave field is turned on, the second term starts playing its role. As a result, the 3D conditional position probability distribution now depends on the interference between the two terms in equation (4). Here, we consider a static magnetic field to ignore degeneracy [32]. We now plot the Doppler-broadened 3D filter function \(\rho_{11}(d) \) versus the normalized positions \(\kappa_x, \kappa_y \) and \(\kappa_z \) for two Rabi frequencies \(\Omega_m \), i.e. (a) 0.03\(\Gamma \) and (b) 0.04\(\Gamma \), corresponding to the microwave field \(E_m \). We notice that one of the two spheres in figure 3 starts diminishing and precision in position measurement of the moving atom can be attained even in the presence of a Doppler shift (see figure 4).

In our proposed atom–field system, the applied fields acting on the atom form a closed loop, resulting in a \(\Delta \)-type configuration. As a result, the optical properties of the system strongly depend on the relative phase \(\varphi \) of the applied fields. Therefore, in the following we consider the role of \(\varphi \) in the precise position measurement of a moving atom in the presence of Doppler broadening.

It is clear that there are two paths to exciting the atom to the upper level [1]: one is by making a direct transition from the ground energy level [2] to the excited level [1] and another is indirect transition from [2] to [1] via the intermediate level [3]. These two atomic transition paths interfere with each other either constructively or destructively depending on the choice of relative phase \(\varphi \). In figure 4, for \(\varphi = 0 \), we notice that precision enhancement of 3D position information is achieved via control of the microwave field even in the presence of Doppler broadening. However, as can be observed from equations (3)–(5), the 3D conditional position probability distribution is sensitive to the relative phase \(\phi \). In figure 5, we plot the 3D conditional position probability distribution for four different non-zero values of the relative phase \(\phi \), i.e. (a) \(\phi = \pi/8 \), (b)
relative phase becomes that the precision of 3D position information reduces as the precise position measurement of hot ^{87}Rb atoms. Our scheme—field configuration [30] for the pre-Δ based on a

\[\phi = \pi/6, \quad (c) \phi = \pi/4 \text{ and (d) } \phi = \pi/2. \]

It can be observed that the precision of 3D position information reduces as the relative phase becomes $\phi = \pi/2$.

Conclusion

We have considered an experimentally realizable scheme based on a Δ-type atom–field configuration [30] for the precise position measurement of hot ^{87}Rb atoms. Our scheme is a possible solution to overcome the issues in the precise position measurement of atoms, which is influenced by the Doppler shift. The position of a single atom which is Doppler shifted in 3D space can be obtained with high precision via control of an external microwave field with a relative phase equal to zero, i.e. $\varphi = 0$.

Acknowledgments

Rahmatullah would like to thank Ziauddin for valuable discussions and the Ministry of Science and Technology, Taiwan, for its support and travel grant.

References

[38] Rahmatullah and Qamar S 2013 Phys. Lett. A 378 684

