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A B S T R A C T

We theoretically study the sensitivity of sub-Planck structures of mesoscopically superposed coherent states to
the thermal reservoirs induced decoherence via dissipative and phase-damping processes, respectively. Under
dissipative reservoir, we show that the size and area of the phase-space structures of cat and compass states do
increase as the function of evolution-time, temperature of thermal reservoir, and cavity mode frequency. It is
also shown that beyond the particular values of these parameters, the size and area of the phase-space
structures remain no longer smaller than the limit set by the Heisenberg's uncertainty principle. Moreover we
show that in contrast to the dissipative reservoir, the phase-space structures of the cat and compass states
persist even in the infinitely-long evolution-time limit under phase-damped reservoir.

1. Introduction

Mesoscopically superposed coherent states have attracted a lot of
attention as they show many unique nonclassical features [1–6]. The
superposition of four specific coherent states or a so-called compass
state reveals the interference structures in the Wigner phase-space
description as noted by Zurek [7]. It contrast to the commonly held
belief that the phase-space structures at the scales smaller than the
limit set by the Heisenberg's uncertainty principle either do not exist or
they do not have any observable consequence, the area of these
interference structures is found to be much smaller than the limit set
by the Heisenberg's uncertainty principle [7–10]. More importantly, it
is demonstrated that such sub-Planck structures enhances the sensi-
tivity of a quantum state to the external perturbations [7]. Later, it is
demonstrated that a superposition of two specific coherent states or a
so-called cat state also reveals the similar sub-Planck structures in the
Wigner phase-space description [3,10]. These developments provide
the new possibilities for carrying-out the Heisenberg-limited measure-
ments. Indeed, it is recently proposed that the sub-Planck structures of
mesoscopically superposed coherent states (MSCS) can be utilized for
carrying-out the Heisenberg-limited measurement of a weak-force
[10].

Several experimental and theoretical methods have been proposed
to generate the MSCS. These includes the time evolution of a coherent
state in the Kerr medium [11,12], fractional revival of molecular wave
packets [13,14], and cavity quantum electrodynamics [15–17].

Particularly in cavity quantum electrodynamics, MSCS are generated
by exploiting the dispersive interaction of high-quality cavities with the
Rydberg atoms and superconducting qubits. However, it is important
to note that generally MSCS are not completely isolated from their
surrounding environment. Therefore the effects of environment, which
always exists and can be modelled by the different types of thermal
reservoirs, should be taken into account while exploiting the sub-
Planck structures of MSCS. Indeed, the effects of thermal reservoirs on
the evolution of coherence of MSCS and other quantum states are
studied extensively [16–21]. However, so far the evolution of size or
area of the sub-Planck structures of MSCS due to the thermal
reservoirs is not studied explicitly despite the fact that it is the sub-
Planck nature of these phase-space structures which is primarily
responsible for Heisenberg-limited measurements.

In this paper, we investigate and clarify the role of thermal
reservoirs induced decoherence on the phase-space structures of
MSCS by analytically solving the appropriate master equations. To
illustrate, we chose the cat and compass states as the two examples of
MSCS. Related to our work, Kim and Bužek [19] have undertaken a
theoretical study on the decay of the brightness of the sub-Planck
structures and nonclassicality of the Schrödinger-cat states due to the
loss of coherence via dissipative thermal reservoir only. In contrast to
their work, the main focus of our work is to study the evolution of the
size and area of the sub-Planck structures of cat and compass states
due to the two different thermal reservoirs, including dissipative and
phase-damped thermal reservoirs. We demonstrate explicitly that
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under the influence of dissipative thermal reservoir not only the
brightness of the sub-Planck structures of cat and compass states
reduces but also their size and area become larger, simultaneously. It is
also shown that beyond the particular values of evolution-time,
temperature of thermal reservoir, and cavity mode frequency, the size
and area of the phase-space structures remain no longer smaller than
the limit set by the Heisenberg's uncertainty principle. Moreover, we
show that unlike the dissipative reservoir, the Wigner functions of the
cat and compass states exhibit the phase-space structures even in the
infinitely-long evolution-time limit under phase-damped reservoir.

2. Theoretical formulation

The general superpositions of M coherent states can be written
as: φ N e α φ πk M= ∑ , = 2 / .n n k

M iφ
k=1

k The cat and compass states
under study read as: φ N α α= ( + − )1 1 and
φ N α α iα iα= ( + − + + − )2 2 , respectively. We assume that the
cat and compass states are stored in a superconducting cavity mode,
which is coupled to the thermal reservoir of the cavity. In a cavity
system, the thermal reservoir can be made of other freely propagating
field modes coupled by diffraction on mirror defects, or electrons and
Cooper pairs in the mirrors [22]. Here, α and α− represent the
constituent coherent states of the cat state, while α , α− , iα , and iα−
represent the constituent coherent states of the compass state,N1 and N2
are the normalization constants. Under dissipative process, the time
evolution of the cat and compass states can be described by the master
equation [23]. It reads

dρ t
dt

iω a a ρ
κ n

a aρ ρ a a aρ a

κn
aa ρ ρ aa a ρ a

( ) = − [ , ] −
(1 + )

2
( + − 2 )

−
2

( + − 2 )

c
th

th

1,2
† 1,2 † 1,2 1,2 † 1,2 †

† 1,2 1,2 † † 1,2
(1)

Here, ρ t( )1 and ρ t( )2 represent the time dependent density operators
corresponding to the cat and compass states, respectively.ωc,κ , and nth
represent the cavity mode frequency, cavity photon decay rate, and the
mean number of thermal photons, respectively. Hereafter, we employ
Eq. (1) in the interaction picture that's why the first term on the right
side of Eq. (1) is neglected. We employ characteristic function
approach for solving the Eq. (1). The symmetric- and normal-order
characteristic functions are defined as [22]:

⎛
⎝⎜

⎞
⎠⎟C λ λ t Tr ρ t e( , *, ) = ( ) ,s

ρ λa λ a1,2 − *1,2 †

(2a)

⎛
⎝⎜

⎞
⎠⎟C λ λ t Tr ρ t e e( , *, ) = ( )n

ρ λa λ a1,2 − *1,2 †

(2b)

For a coherent state α , normal- and symmetric-order character-
istic functions are related through the following relation [22]:

C λ λ t e C λ λ t( , *, ) = ( , *, )n
α α λ

s
α α/22

(3)

With the aid of Eq. (2b), Eq. (1) can be rewritten in the form of
normal-order characteristic function. It reads

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

dC λ λ t
dt

κ n
Tr a aρ ρ a a aρ a e e

κn
Tr aa ρ ρ aa a ρ a e e

( , *, )
= −

(1 + )
2

( + − 2 )

−
2

( + − 2 )

n
ρ

th λa λ a

th λa λ a

† 1,2 1,2 † 1,2 † − *

† 1,2 1,2 † † 1,2 − *

1,2
†

†

(4)

Now, we consider the action of the differential operators λ(∂/∂ ) and
λ(∂/∂ *) on the normal-order characteristic function to draw the corre-

spondence between the derivatives of C λ λ t( , *, )n
ρ1,2

and other normal-
order characteristic functions of a aρ ,† 1,2 ρ a a1,2 † ,aρ a1,2 †, aa ρ† 1,2, ρ aa1,2 †,
and a ρ a† 1,2 . After straightforward calculations, we obtain following
relations:

⎛
⎝⎜

⎞
⎠⎟C λ λ t C λ λ t

λ λ
λ

λ
C λ λ t( , *, ) = ( , *, ) = − ∂

∂ *∂
+ * ∂

∂ * ( , *, ),n
a aρ

n
aa ρ

n
ρ

2† 1,2 † 1,2 1,2

(5a)

⎛
⎝⎜

⎞
⎠⎟C λ λ t C λ λ t

λ λ
λ

λ
C λ λ t( , *, ) = ( , *, ) = − ∂

∂ *∂
+ ∂

∂
( , *, ),n

ρ a a
n
ρ aa

n
ρ

21,2 † 1,2 † 1,2

(5b)

⎛
⎝⎜

⎞
⎠⎟C λ λ t

λ λ
C λ λ t( , *, ) = − ∂

∂ *∂
( , *, ),n

aρ a
n
ρ

21,2 † 1,2

(5c)

⎛
⎝⎜

⎞
⎠⎟C λ λ t

λ λ
λ

λ
λ

λ
λ C λ λ t( , *, ) = − ∂

∂ *∂
+ ∂

∂
+ * ∂

∂ * − ( , *, )n
a ρ a

n
ρ

2
2† 1,2 1,2

(5d)

Using Eq. (5), we rewrite Eq. (4) in the form of normal-order
characteristic functions. It reads

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dC λ λ t
dt

κn λ C λ λ t κ λ
C λ λ t

λ

λ
C λ λ t

λ

( , *, )
= − ( , *, ) −

2
∂ ( , *, )

∂

+ *∂ ( , *, )
∂ *

n
ρ

th n
ρ n

ρ

n
ρ

2
1,2

1,2
1,2

1,2

(6)

Since the Wigner function of a quantum state can be calculated
from its symmetric-order characteristic function. So now we convert
Eq. (6) in the form of symmetric-order characteristic function by using
Eq. (3). It reads

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dC λ λ t
dt

κ n λ C λ λ t

κ λ
C λ λ t

λ
λ

C λ λ t
λ

( , *, )
= − ( + 1/2) ( , *, )

−
2

∂ ( , *, )
∂

+ *∂ ( , *, )
∂ *

s
ρ

th n
ρ

s
ρ

s
ρ

2
1,2

1,2

1,2 1,2

(7)

The density operator corresponding to the cat state, φ1 , is given by

ρ t φ φ N α α α α α α α α( = 0) = = ( + − − + − + − )s
1

1 1 1
2

(8)

Similarly, the density operator corresponding to the compass
state can be calculated as:ρ t φ φ( = 0) =s

2
2 2 . The normalization

constants are given as:
⎛
⎝⎜

⎞
⎠⎟N e= 1/2 1 + α

1
2 −2 2

and

⎛
⎝⎜

⎞
⎠⎟N e e e= 1/4 1 + + +α α i α i

2
2 −2 − (1− ) − (1+ )2 2 2

. With the aid of Eq. (2a),

the initial symmetric-order characteristic function corresponding to a
general density operator α β is given by

C λ λ t e( , *, = 0) =s
α β λ α β αβ β λ αλ− ( + + −2 *)

2 + * − *
2 2 2

(9)

For this symmetric-order characteristic function, we seek a solution
of Eq. (7) in the form:

C λ λ t e e( , *, ) =s
α β α β αβ a t λ b t λ c t λ− ( + −2 *)

2 ( ( ) + ( ) + ( ) *)
2 2

2
(10)

subjected to the initial conditions,a(0) = − 1/2, b β(0) = *, and
c α(0) = − . After substituting Eq. (10) in Eq. (7) and employing the
initial conditions, the solution of Eq. (7) for a general density operator
α β is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

C λ λ t e e( , *, ) =s
α β α β αβ λ λ n e β λe αλ e− ( + −2 *)

2
− 2 + (1− )− * + *th

κt κt κt2 2 2
2 − − /2 − /2

(11)

With the aid of Eq. (11), the symmetric-order characteristic
function of the cat (compass) state can be obtained by summing-up
all the symmetric-order characteristic functions corresponding to each
individual density operators of the cat (compass) state. The Wigner
functions of the cat and compass states can be calculated as [19]:
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∫W γ γ t d λC λ λ t e( , *, ) = ( , *, )φ φ
s
ρ γλ γ λ,

−∞

+∞
2 *− *1 2

1,2

(12)

After substituting the value of time dependent symmetric-order
characteristic function corresponding to the cat sate in Eq. (12), the
Wigner function of the cat state is given by

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

W γ γ t
N

πD t
e e

e e
α γ
D t

( , *, ) =
( )

+

+ 2 cos
2 ′′

( )

φ D t γ α D t γ α

D t γ α E t t

1
2

− 1
( ) − − 1

( ) +

− 1
( ) − (2− ( ))

t t1
2 2

2 2

(13)

Here, D t n e( ) = 1/2 + (1 − )th
κt− , E t e D t( ) = / ( )κt− ,n e= ( − 1)th

hω KT/ −1c ,
α αe=t

κt− /2 and γ γ iγ= ′ + ′′. Where, α, h, K and T represent the
amplitude of the coherent state, Planck constant, Boltzmann constant,
and temperature of thermal reservoir, respectively. The term D t( )
represents the dispersion of coherent states due to the flow of
fluctuation energy from the thermal reservoir into the cavity mode.
The first two-terms on the right-hand side of Eq. (13) represent the
Wigner functions of the individual coherent states of the cat state, while
the last cosine term represents the quantum interference between these
two coherent states. This interference term is of the great interest, since
it leads to the formation of phase-space structures at the scales much
smaller (< < ℏ/2) than the limit set by the Heisenberg's uncertainty
principle (≥ℏ/2) along γ′′ direction. The size Δγ( ′′) of these phase-space
structures is obtained from the condition at which the cosine term in
Eq. (13) vanishes. It reads

Δγ πD t
α

′′ = ( )
2 t (14)

After following the procedure similar to that for the cat state, the
Wigner function of the compass state is given by

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎫⎬⎭

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

W γ γ t
N

πD t

e e e e

e e

e e

γ γ i γ γ

γ γ i γ γ e

e

γ γ i γ γ

γ γ i γ γ

( , *, ) =
( )

+ + +

+ 2 cos

+ cos + 2

cosh (( ′ + ′′) − ( ′ + ′′))

+ cosh (( ′ − ′′) − ( ′ − ′′)) + 2

× cosh (( ′ + ′′) + ( ′ + ′′))

+ cosh (( ′ − ′′) + ( ′ − ′′))

′′

φ

γ α γ α γ iα γ iα

γ α E t α γ
D t

α γ
D t

γ α i E t

α
D t

α
D t

γ

α i E t

α
D t

α
D t

2
2

− − − + − − − +

− − (2− ( )) 2
( )

2 ′
( )

− − (1− (1− ( )))

( )

( )
−

− (1+ (1− ( )))

( )

( )

D t t D t t D t t D t t

D t t

t D t

t

t D t

t

t

2

1
( )

2 1
( )

2 1
( )

2 1
( )

2

1
( )

2 2

1
( )

2 2

1
( )

2

2

(15)

The first four-terms on the right-hand side of Eq. (15) represent the
Wigner functions of the individual coherent states of the compass state,
while the fifth cosine term is of the greatest importance since it leads to
the formation of phase-space structures at the scales much smaller
(< < ℏ/2) than the limit set by the Heisenberg's uncertainty principle
(≥ℏ/2) along the arbitrary direction in the central region of phase-
space. The other remaining cosine-hyperbolic terms reveal the oblique
interference patterns in phase-space. The area A( ) of the phase-space
structures corresponding to the fifth term of Eq. (15) is obtained from
the condition at which this term vanishes. It reads

A π D t
α

= ( )
2 t

2 2

2 (16)

Under phase-damping process, the time evolution of the cat and
compass states can be described by the master equation [23–26]. In the
interaction picture, it reads

dρ
dt

κ a aa aρ ρ a aa a a aρ a a= − ′( + − 2 )
1,2

† † 1,2 1,2 † † † 1,2 †
(17)

where κ′ = κ n(1 + 2 )
2

th . In general, the phase-damping of a quantum
system takes place due to elastic scattering of the thermal reservoir
photons through the quantum system itself. The solution of Eq. (17)
can be written in coherent states basis. It reads

∫ ∫ρ t d p
π

d q
π

ρ t p q( ) = ( )pq
1,2

−∞

+∞

−∞

+∞ 2 2
1,2

(18)

The density matrix element ρ t( )pq
1,2 is calculated by putting Eq. (18)

into Eq. (17). It reads

ρ t ρ t e( ) = ( = 0)pq pq
κ t p q1,2 1,2 − ′ ( − )2 2 2

(19)

From Eqs. (18) and (19), the solution of Eq. (17) reads

∫ ∫ρ t d p
π

d q
π

ρ t e p q( ) = ( = 0) ′pq
κ t p q1,2

−∞

+∞

−∞

+∞ 2 2
1,2 − ( − )2 2 2

(20)

It is easy to recognize that in the long evolution-time limit κ t( ′ → ∞)
only diagonal elements,ρpp

1,2, can survive under phase-damping process.
Thus in the long evolution-time limit κ t( ′ → ∞), the solution of Eq. (17)
can be written as

∫ρ κ t d p
π

ρ t p p( ′ → ∞) = ( = 0)pp
1,2

−∞

+∞ 2
1,2

(21)

The Wigner functions of the cat and compass states under phase-
damping process, in the long evolution-time limit κ t( ′ → ∞), can be
calculated as [16]:

∫W γ γ t e
π

d β β ρ κ t β e( , *, → ∞) = 2 − ( ′ → ∞)φ φ
γ

βγ β γ,
2

2 −∞

+∞
2 1,2 −2( *− * )1 2

2

(22)

The Wigner function of the cat state is obtained by calculating
ρ κ t( ′ → ∞)1 through Eq. (21). It reads

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟W γ γ t

N
π

e e e e αγ( , *, ) =
2

3
+ + 2 cos 4 ′′

3
φ γ α γ α γ α1

2
− 2

3 − − 2
3 + − 2

3 − 4
31

2 2 2 2

(23)

Similar to the Eq. (13), the first two terms on the right-hand side of
Eq. (23) represent the Wigner functions of the individual coherent
states, while the last cosine term represents their interference. The size
Δγ( ′′) of phase-space structures corresponding to this cosine term is
given by

Δγ π
α

′′ = 3
4 (24)

The Wigner function of the compass state is obtained by calculating
ρ κ t( ′ → ∞)2 through Eq. (22). It reads

P. Kumar, R.-K. Lee Optics Communications 394 (2017) 23–30

25



⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

W γ γ t
N
π

e e e e

e e

e e

γ γ i γ γ

γ γ i γ γ

e e
γ γ i γ γ

γ γ i γ γ

( , *, ) =
2

3

+ + +

+ 2 × {cos( )

+cos( )} + 2

{cosh( (( ′ + ′′) − ( ′ + ′′)))

+ cosh( (( ′ − ′′) − ( ′ − ′′)))}

+ 2
×{cosh( (( ′ + ′′) + ( ′ + ′′)))

+ cosh( (( ′ − ′′) + ( ′ − ′′)))}

′′

φ

γ α γ α γ iα γ iα

γ α αγ

αγ γ α i

α

α

γ α i

α

α

2
2

− − − + − − − +

− − 4
3

4 ′
3

− − (1+ /3)

2
3
2
3

− − (1+ /3)

2
3

2
3

2

2
3

2 2
3

2 2
3

2 2
3

2

2
3

2 4
3

2

2
3

2 4
3

2

2
3

2 4
3

2

(25)

The first four-terms on the right-hand side of Eq. (25) represent the
Wigner functions of the individual coherent states; while the fifth term
associated with the cosine functions represent their interference
pattern. The other remaining cosine-hyperbolic terms represent the
interference between two individual coherent states. The area A( ) of the
phase-space structures corresponding to fifth cosine term is given by

A π
α

= 9
8

2

2 (26)

It is easy to understand from Eqs. (14) and (24) that the size of sub-
Planck structures of cat state is inversely proportional to the phase-
space distance α(2 ) between its constituent coherent states, α and α− .
Therefore the defined notions of size can be generalized to other
superposed coherent states wherein the sub-Planck structures arise due
to interference between two arbitrary coherent states only by putting
the phase-space distance of the concerned coherent states in place of 2
α. Regarding the generalized notion of area of 2-D sub-Planck
structures, we find that the shapes (square, circular or triangular,
etc.) of these sub-Planck structures get changed depending upon the
number of superposed coherent states participating in the formation of
these interference patterns. Therefore the separate definitions of area,
for the particular sets of superimposed coherent states, should be more
appropriate for the quantitative analysis of their evolution under
dissipative and phase-damped reservoirs.

3. Results and discussions

We now study the time evolution of the Wigner functions of the cat
and compass states for the realistic values of involved parameters. The
typical value of cavity mode frequency ω( )c is considered to be
48.18 GHz [17]. In Fig. 1, we show the Wigner functions of the cat
state for the different values of coherent state amplitude α( ), evolution-
time κt( ), and temperature of thermal reservoir T( ). In Fig. 1(a), the
Wigner function of the cat state for α = 3, κt = 0, and T mK= 0 is
shown. The Wigner function of an individual coherent state (right- and
left-hand side) and their interference patterns comprising the phase-
space structures in the central region can be observed.

Next in Fig. 1(b), we present the Wigner function of the cat state
with the same value of α but for the non-zero values of evolution-time
and temperature of thermal reservoir κt T mK( = 0.02, = 10 ). It can be
observed from Fig. 1(b) that the brightness of the Wigner functions of
individual coherent states and phase-space structures gets reduced.
This is due to the decay and dispersion of the amplitude of coherent
states under non-zero values of evolution-time κt( = 0.02) and tem-
perature of thermal reservoir T mK( = 10 ) (See Eq. (13)), respectively.
In Fig. 1(c), we show the Wigner function of the cat state for α = 5,
κt = 0, and T mK= 0 . It can be observed that the size γ(∆ ′′) of phase-
space structures is smaller compared to those in Fig. 1(a), because the
size Δγ( ′′) of the phase-space structures is inversely proportional to αt
(See Eq. (14)). In Fig. 1(d), we show the Wigner function of the cat
state for α = 5, κt = 0.02, and T mK= 10 . It can be observed from
Fig. 1(d) that for the increased value of α, the brightness of phase-space

structures gets reduced sharply compared to those in Fig. 1(b).
In Fig. 2(a), we show the Wigner function of the compass state for

α = 3, κt = 0, and T mK= 0 . The Wigner functions of individual
coherent states and their interference patterns comprising the phase-
space structures, in the central region, can be observed. It is important
to note that the phase-space structures of the compass state are formed
along both the directions (γ′ and γ′′) in contrast to those of the cat state.
The additional oblique phase-space structures appear due to the
interference between two individual coherent states. In Fig. 2(b), we
show the Wigner function of the compass state for the non-zero values
of evolution-time κt( = 0.02) and temperature of thermal reservoir
T mK( = 10 ). Similar to Fig. 1(b), the brightness of the Wigner
functions of individual coherent states and their interference patterns
gets reduced under the non-zero values of evolution-time κt( = 0.02)
and temperature of thermal reservoir T mK( = 10 ). It can be observed
from Fig. 2(c) that for the increased value of α, the area A( ) of the
phase-space structures is smaller compared to those in Fig. 2(a),
because the area A( ) of phase-space structures is found to be inversely
proportional to αt

2 (See Eq. (16)).
Similar to the Fig. 1(d), the brightness of phase-space structures

gets reduced sharply for the increased value of α under non-zero values
evolution-time κt( = 0.02) and temperature of thermal reservoir
T mK( = 10 ) as can be observed in Fig. 2(d). It can be understood from
Figs. 1(d) and (d) that the brightness of phase-space structures of the
cat and compass sates gets reduced quickly for the increased values of α
under the non-zero values of evolution-time κt( ) and temperature of
thermal reservoir T( ). Therefore, hereafter we focus on the dissipative
process induced evolution of phase-space structures of the cat and
compass states with α = 3.

In Fig. 3, we focus only on the phase-space structures that appear in
central phase-space region of the Wigner functions of the cat and
compass states. It can be observed by comparing Figs. 3(a) and (b) that
the size Δγ( ′′) of the phase-space structures is larger for the non-zero
values of evolution-time κt( = 0.02) and temperature of thermal reser-
voir T K( = 2 ). Similarly, the Area A( ) of the phase-space structures is
larger for the non-zero values of evolution-time κt( = 0.02) and
temperature of thermal reservoir T K( = 2 ) as can be observed by
comparing Figs. 3(c) and (d). The size (area) of the phase-space
structures of cat (compass) state increases because the phase-space
separation between the constituent coherent states decreases due to
their decay and dispersion under dissipative process.

For more quantitative analysis, in Fig. 4, we show the evolution of
the size (area) of the phase-space structures of the cat (compass) state
as a function of evolution-time κt( ) under the different values of
temperature of thermal reservoir T( ). It can be observed from
Figs. 4(a) and (b) that the size (area) of the phase-space structures
of cat (compass) state does increase rapidly for the non-zero values of
temperature of thermal reservoir T K( ≠ 0 ) compared to that of zero
temperature reservoir (T=0 K). Therefore the temperature of thermal
reservoir plays a substantial role in the evolution of phase-space
structures. Figs. 4(a) and (b) also reveal that beyond the particular
values of evolution-time κt( > 0.04) and temperature of thermal reser-
voir T K( = 4 ), the size Δγ( ′′) and area A( ) of the phase-space structures
of the cat and compass states remain no longer smaller
Δγ A( ′′ < 1/2, < 1/2(ℏ = 1)) than the limit set by the Heisenberg's
uncertainty principle. We find that for the typical values of cavity
decay rate κ KHz κ ms( = 7.2 ( = 0.13 ))−1 and temperature of thermal
reservoir T K( = 4 ) [6,27,28], the size Δγ( ′′) and area A( ) of phase-space
structures becomes greater than 0.5 Δγ A( ′′ > 1/2, > 1/2) for
t ms> 0.0055 . Therefore a quantummeasurement which aims to exploit
the sub-Planck structures to achieve the Heisenberg-limited sensitivity
should be completed within the time-scale of at least two-orders of
magnitude shorter than the cavity decay time κ( )−1 . It is also clear from
Figs. 4(a) and (b) that the size of sub-Planck structures is less sensitive
to the dissipative reservoir compared to that of area as the former
increases slowly with respect to the time-evolution.
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In all the results presented so far we employ the constant value of
cavity mode frequency ω GHz( = 48.18 )c . However, in the different
experimental designs the value of cavity frequency can be different.
Therefore, in Fig. 5, we analyze the evolution of size (area) of the
phase-space structures of the cat (compass) state as the function of
cavity mode frequency ω( )c and temperature of thermal reservoir T( ) for
a fixed value of the evolution-time κt( = 0.02). It can be observed from
Figs. 5(a) and (b) that the size (area) of the phase-space structures of
the cat (compass) state does increase as the function of cavity mode
frequency ω( )c and temperature of thermal reservoir T( ). We find that
for the cavity mode frequencies,ω GHz< 16.4(21.8)c , and thermal-re-
servoir-temperature,T K= 3(4) , the size Δγ( ′′) of the phase-space struc-
tures of the cat state remain no longer smaller Δγ( ′′ < 1/2(ℏ = 1)) than
the limit set by the Heisenberg's uncertainty principle as can be

observed from Fig. 5(a). Similarly, the area A( ) of the phase-space
structures of the compass state remain no longer smaller
A( < 1/2(ℏ = 1)) than the limit set by the Heisenberg's uncertainty
principle for the cavity mode frequencies, ω GHz< 16.7(22.3)c , and
thermal-reservoir-temperature, T K= 3(4) , as can be observed from
Fig. 5(b).

It can be understood from Figs. 1 and 2 that the phase space
structures shall vanish in the long evolution-time limit κ t( ′ → ∞) under
dissipative processes. However, in Fig. 6, we show the Wigner
functions of the cat state under long evolution-time limit κ t( ′ → ∞) to
compare these results with their counterparts under phase-damping
process. In Fig. 6, we show the Wigner function of a cat state at two
different temperatures.

It can be observed from Fig. 6(a) that under long evolution-time

Fig. 1. Evolution of the Wigner functions of the cat state for the different values of coherent state amplitude α( ), evolution-time κt( ), and temperature of thermal reservoir T( ). (a) α = 3,
κt = 0, and T mK= 0 , (b) α = 3, κt = 0.02, and T mK= 10 , (c) α = 5, κt = 0, and T mK= 0 , and (d) α = 5, κt = 0.02, and T mK= 10 .

Fig. 2. Evolution of the Wigner functions of the compass state for the different values of coherent state amplitude α( ), evolution-time κt( ), and temperature of thermal reservoir T( ). (a)
α = 3, κt = 0, and T mK= 0 , (b) α = 3, κt = 0.02, and T mK= 10 , (c) α = 5, κt = 0, and T mK= 0 , and (d) α = 5, κt = 0.02, and T mK= 10 .
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Fig. 3. Central phase-space structures in the Wigner functions of the cat (a, b) and compass (c, d) states for the different values of evolution-time κt( ) and temperature of thermal

reservoir T( ). (a) α = 3, κt = 0, and T K= 0 , (b) α = 3, κt = 0.02, and T K= 2 , (c) α = 3, κt = 0, and T K= 0 , and (d) α = 3, κt = 0.02, and T K= 2 .

Fig. 4. Evolution of the size ′′Δγ( ) and area A( ) of the phase-space structures of the cat (a) and compass (b) state as a function of evolution-time κt( ) under the different values of

temperature of thermal reservoir T( ) and α = 3.

Fig. 5. The evolution of the size ′′Δγ( ) and area A( ) of the phase-space structures of the cat (a) and compass (b) states as a function of thermal-reservoir-temperature T( ) and cavity mode

frequency ω( )c for a fixed value of evolution-time κt( = 0.02) and α = 3.
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limit κ t( ′ → ∞) and zero-temperature thermal reservoir T K( = 0 ), the
Wigner function of the cat state is transformed into the Wigner
function that of a vacuum state due to the loss of cavity photons to
the thermal reservoir. However for the non-zero value of temperature
of thermal reservoir T K( = 4 ) in Fig. 6(b), the Wigner function of the
cat state is transformed into the Wigner function that of a thermal state
due to the loss of cavity photons to the thermal reservoir and flow of
thermal fluctuation energy from the reservoir into the cavity mode,
simultaneously. Under long evolution-time limit κ t( ′ → ∞), we find that
the Wigner function of the compass state is also transformed into the
Wigner function that of a vacuum and thermal state for T K= 0 and
T K= 4 , respectively.

In Fig. 7, we now show the phase-space structures that appear in
central phase-space region of the Wigner functions of the cat and
compass states under phase-damping process in the long evolution-
time limit κ t( ′ → ∞). In contrast to the dissipative process induced
decoherence, the phase-space structures of the cat and compass sates
do survive under phase-damping induced decoherence even in the long
evolution-time limit κ t( ′ → ∞) as can be observed by comparing Figs. 6

and 7. However, the magnitude of the phase-space structures gets
reduced due to the partial loss of coherence under phase-damping
process, particularly for the larger value of α (See third term in Eq. (23)
and fifth term in Eq. (25)).

It can also be observed from Figs. 7(a) and (b) that the size Δγ( ′′) of
phase-space structures of the cat state is smaller for the larger value of
α, because the size Δγ( ′′) of phase-space structures is inversely
proportional to α (See Eq. (24)). Similarly the area A( ) of phase-space
structures of compass state is smaller for the larger value of α, because
the area A( ) of phase-space structures is inversely proportional to α2

(See Eq. (26)). This can be observed from Figs. 7(c) and (d).
Finally in Fig. 8, we show the evolution of the size Δγ( ′′) and area

A( ) of the phase-space structures of cat and compass states under
phase-damping process in the long evolution-time limit κ t( ′ → ∞) as a
function of coherent state amplitude (α). It can be observed that for the
increased value of coherent state amplitude (α), the size Δγ( ′′) and area
A( ) of the phase-space structures of cat and compass states becomes
smaller than 0.5 Δγ A( ′′<1/2, < 1/2). Therefore under phase-damping
process, the sub-Planck nature of the phase-space structures of cat and

Fig. 6. The Wigner functions of the cat state for two different values of temperature of thermal reservoir T( ) under long evolution-time limit κ t( ′ → ∞). (a) α κ t T K= 3, ′ → ∞, = 0 , and

(b) α κ t T K= 3, ′ → ∞, = 4 .

Fig. 7. Central phase-space structures in the Wigner functions of the cat (a, b) and compass (c, d) states under phase-damping process in long evolution-time limit κ t( ′ → ∞). α = 3 in (a)

and (c), α = 5 in (b) and (d).
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compass states can persist even in the long evolution-time limit
κ t( ′ → ∞), but at the expense of reduced magnitudes of their Wigner
functions (see Fig. 7).

4. Conclusions

In conclusion, we have theoretically investigated the sensitivity of
the phase-space structures of cat and compass states to the thermal
reservoirs induced decoherence through the dissipative and phase-
damping processes by analytically solving their respective master
equations. In our study, we have explicitly included the terms involving
the mean number of thermal photons in the master equation describing
the dissipative process. This enabled us to clarify the role of reservoir
parameters, including its temperature and frequency. It is demon-
strated that under the influence of dissipative thermal reservoir not
only the brightness of the sub-Planck structures of cat and compass
states reduces but also their size and area become larger, simulta-
neously. We have also shown that after the finite evolution-time, the
size and area of the phase-space structures involved remain no longer
smaller than the limit set by the Heisenberg's uncertainty principle.
The area of sub-Planck structures is found to be more sensitive to the
dissipative reservoir compared to that of size as the former increases
quickly with respect to the time-evolution. Moreover, it is demon-
strated that in contrast to the dissipative reservoir, the phase-space
structures of the cat and compass states persist even in the infinitely-
long evolution-time limit under phase-damped reservoir.
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