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Abstract: One of the most fundamental difference between classical and
quantum mechanics is observed in the particle tunneling through a localized
potential: the former predicts a discontinuous transmission coefficient (T )
as a function in incident velocity between one (complete penetration) and
zero (complete reflection); while in the latter T always changes smoothly
with a wave nature. Here we report a systematic study of the quantum
tunneling property for a bright soliton, which behaves as a classical particle
(wave) in the limit of small (large) incident velocity. In the intermediate
regime, the classical and quantum properties are combined via a finite
(but not full) discontinuity in the tunneling transmission coefficient. We
demonstrate that the formation of a localized bound state is essential to
describe such inelastic collisions, showing a nontrivial nonlinear effect on
the quantum transportation of a bright soliton.
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Recently, with the easy realization of some experiments in the optical domain, there is a
great deal of attention to unify concepts in physics. For example, the interplay between the
interaction effect and disorder potential has long been an interesting subject in condensed mat-
ter physics, from Anderson localization in the noninteracting limit [1] to the Bose glass in the
strongly interacting region [2]. Similar transport problem can also be investigated in the sys-
tems of nonlinear optics and ultracold atoms, where for the latter one Bose-Einstein condensates
(BECs) are demonstrated to unify concepts in classical and quantum physics at a macroscopic
scale [3]. Fermionic or bosonic particles with a tunable interaction strength can be studied in a
well-controlled quasi-disordered potential [4]. In this context, solitons, localized wavepackets
undergoing confinement owing to nonlinear effects [5, 6], become an ideal representative for
the investigation in a macroscopic scale of the wave-particle duality which is one of the funda-
mental pillars in modern physics [7]. For example, a bright soliton (BS) resembles a classical
particle in their collision properties [8], and should have a complete penetration or reflection
predicted by classical mechanics, see Fig. 1(a). On the other hand, due to the underlying wave
nature, a soliton should always reveal partial penetration and reflection as predicted in the quan-
tum mechanics, see Fig. 1(b). Therefore, it is of both interest and fundamental importance to
study how the nonlinearity (i.e., the interaction effect between bosonic particles) can modify
the quantum transportation properties of a BS and related transition between these two regimes
[9, 10, 11].

Soliton tunneling [12, 13, 14, 15, 16, 17], i.e. scattering of a soliton off finite-size impurities,
demonstrates the nonlinear dynamics of a wave packet colliding with a potential, and illustrates
the link between classical and quantum mechanics. Apart from the existing literature on soli-
tons moving in a defect [18, 19, 20, 21, 22], in this paper we investigate quantum tunneling
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Fig. 1. Schematic plots for different tunneling dynamics through a local potential, V (x). The
incident, transmission, and reflection velocities are denoted as vi, vt , and vr, respectively.
(a) Classical picture with either a total transmission (T = 1) or total reflection (T = 0). (b)
Quantum mechanical picture with a partial transmission (0< T < 1). The notations, Ψi,Ψt ,
and Ψr represent the incident, transmitted, and reflected wavefunctions, respectively. (c)
Inelastic scattering process of a BS through a potential well, V (x) < 0, where a localized
bound state, Ψb, appears after scattering.

properties for a one-dimension (1D) BS in cases of both potential barrier and well, as a func-
tion of the initial soliton velocity. In particular this work demonstrates a full phase diagram of
the transmission coefficient, in terms of the potential strength and initial velocity, and gives the
analytical formula to explain the role of nonlinear interaction in the soliton tunneling. Through
a systematic numerical simulation, we find that a BS is like a classical particle, as illustrated
in Fig. 1(a), when the kinetic energy of an incident BS is smaller than the nonlinear interaction
energy in a repulsive potential; while it behaves as an ordinary wave in the other limit and is
independent of the sign of local potential, as illustrated in Fig. 1(b). In the intermediate regime,
the nature of particle-wave dualism from a BS shows a discontinuity in the transmission co-
efficient (T ) as a function of the incident velocity, while the amplitude of the discontinuity is
less than one, as required by a true classical particle. We numerically calculate the full phase
diagram in such a crossover regime, and observe a qualitative difference in the scattering pro-
cess between a potential barrier and a potential well: the latter case is an inelastic scattering due
to the appearance of a localized bound state, see Fig. 1(c). Semi-analytical curves for such a
border are derived both for potential barriers as well as potential wells. The dual nature in quan-
tum tunneling of a BS elucidated in this work should be ready to be observed in the system of
ultracold atoms as well as in the dielectric material with electromagnetic waves.

Here, we consider the dynamics of a weakly interacting BEC at zero temperature, which
can be well-approximated by the Gross-Pitaevskii equation, referred also as the nonlinear
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Fig. 2. Contour plot of the transmission coefficient as a function of incident soliton velocity
vi and potential strength |V0|. Cases of potential barrier V0 > 0 and potential well V0 < 0
are separately shown in (a) and (b). White dashed lines are plotted from Eq. (4) and Eq. (9)
for the corresponding analytical results (see the text).

Schrödinger equation (NLSE) [23],

[
−1

2
∂ 2

∂x2 +g|Ψ(x, t)|2 +V (x)

]
Ψ(x, t) = i

∂
∂ t

Ψ(x, t), (1)

where the particle mass m and h̄ are both set to 1, Ψ(x, t) represents the condensate wavefunc-
tion, g measures the inter-particle interaction, and V (x) = V0δ (x) indicates a defect potential.
When the interaction is attractive, g< 0, a stable bright soliton is supported in a uniform system
with the solution [5]

Ψbs(x, t) =
β√|g| sech [β (x− xc − vi t)]e

iθ(x,t), (2)

where the center of the wavepacket is denoted by xc, and θ(x, t) ≡ vix− Et, with the total
energy E ≡ v2

i /2+ μ and the chemical potential μ = −β 2/2, respectively. The velocity for a
BS is characterized by vi. For 1D solitons, the free parameter is β , which can be set to unit
with the normalization condition by taking β = |g|/2, i.e.,

∫ ∞
−∞ |Ψbs(x, t)|2 dx = 2β/|g| = 1.

In this case, the only two independent parameters left are the normalized potential strength,
Ṽ0 ≡V0/|g|, and the normalized initial velocity, ṽi ≡ vi/|g|, which define our parameter space. In
the following, we consider the transportation process when such a BS wavepacket is generated
at t = 0, centered at xc → −∞, and then propagates along the positive x-axis with an initial
velocity vi. This wavepacket then scatters the local defect V (x) at the position x = 0, resulting
in possible transmitted, reflected, and localized wave functions after a certain time measured.

First of all, the calculated transmission coefficient (T ) as a function of vi and V0 > 0 for a
repulsive potential is illustrated in Fig. 2(a) by directly solving Eq. (1) numerically. Here, T is
defined as ≡ ∫ ∞

a limt→∞ |Ψ(x, t)|2 dx with a small value a > 0 to exclude the contribution from
any possible localized bound states. As one can see from Fig. 2(a), in the region with a small
value of vi and |V0|, there exists a line that characterizes the discontinuity in the transmission
coefficient. The existence of such a discontinuity certainly reflects the particle nature of a BS,
i.e., totally transmitted (T = 1) or totally reflected (T = 0) as shown in Fig. 1(a). However,
this line of border for the particle nature breaks down at a critical point in the parameter space
where the incident velocity and corresponding potential strength are denoted by ṽ∗i ∼ 0.8 and
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|Ṽ ∗
0 | ∼ 1.2. Beyond these values, instead of a disrupt change, the contours of transmission

coefficient T changes continuously as a regular wave.
On the contrary, in Fig. 2(b), the tunneling properties are different for a BS through an at-

tractive potential (V0 < 0, a potential well). Qualitatively speaking, we have a similar “phase
diagram” as the case of a potential barrier, but now the phase boundary, the while dashed curve,
becomes a nearly linear line. As it would be demonstrated later, at a small value of V0, such a
universal border, independent from any additional parameters, comes from the existence of a
localized bound state. The formation of this localized bound state screens the potential well and
results in extra interactions on the quantum tunneling of a BS.

In order to give a deeper understanding of these numerical results, we consider the limit of a
weak nonlinear interaction for the first step. When the interaction energy is much smaller than
the kinetic energy and potential energy, the corresponding transmission coefficient should be
similar to that in the standard quantum mechanics textbook [7], i.e.,

T ≈ (vi/V0)
2

1+(vi/V0)
2 +O(

1

v2
i

). (3)

As expected for a characteristic wave nature, the transmission coefficient T is always contin-
uous and independent of the sign of potential strength, V0. We note that above results are true
both for incident waves in the form of a soliton wavepacket and a plane wave. In such a sce-
nario, the incident BS can be easily distorted by the local potential due to that the nonlinearity
is too weak to support the original soliton solution, resulting in a lots of dispersive radiations in
the transmitted or reflected waves [24].

On the other hand, in the limit of a weak and repulsive potential along with a small veloc-
ity, i.e., the strong interaction limit, we can safely assume that the propagating soliton is not
affected by the potential. Hence, one can use the center position of a BS, xc(t), to describe the
whole transportation process if there is no bound state generated during the scattering process.
In this limit, one can rigorously show that the dynamics of xc(t) behaves like a classical par-
ticle moving effectively in a conservative potential, Veff(x), which is just a convolution of the

local potential with the soliton wavefunction [25], i.e., Veff(x) =
β 2

2|g|V0 sech2(x). Therefore, the
corresponding “conservation law” for the total energy is found to be,

v(t)2 +
β 2

|g|2V0 sech2[xc(t)] = v2
i +

β 2

|g|2V0 sech2(xi), (4)

where v(t)≡ 1
|g|

dxc(t)
dt is the defined particle velocity for a BS. As a result, the border across the

regions with T = 1 and T = 0 can be defined by taking v(t) = 0 and xc = 0 as the boundary
condition, along with the initial condition xi → −∞. Then, we obtain the relation V0/|g| =
(|g|/β )2(vi/|g|)2 = 4(vi/|g|)2, which is depicted as the white dashed line in Fig. 2(a).

However, we know that above semi-classical approach used for Eq. (4) fails when V0 is larger
than a critical value, denoted as V ∗

0 due to the failure of taking the BS as a classical particle.
This critical value can be estimated as following: as the center of a BS reaches the location of a
potential, it gains a local potential energy, V0|Ψ(0)|2, which cannot be larger than the absolute
value of the chemical potential, |μ | = β 2/2 = |g|2/8, in order to keep the soliton description
valid. From Eq. (2), the critical value for the breakdown is V ∗

0 /|g| = 0.5. In Fig. 2(a), the
agreement between the analytical curve defined by Eq. (4) and our direct numerical simulations
is good both qualitatively and quantitatively. When V0 is close to V ∗

0 , the BS is in the brink of
collapsing, then the reflection part as well as the non-soliton radiation become non-negligible.
Discrepancies from above analytical results are therefore expected.

Now we come to the potential well, which should have similar results as the potential bar-
rier in the limit of large V0 and vi (the wave nature in the weak interaction limit). However,
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in the regime of small V0 and vi, the wavepacket description used above fails for the lack in
the consideration of possible localized bound states supported in an attractive interaction. The
appearance of a localized bound state indicates extra inelastic scatterings. Therefore, the result-
ing tunneling amplitude changes dramatically, as compared to the case of a potential barrier.
The bound state wavefunction for a localized potential has been well-studied in the literature
[26, 27, 28, 29], and its analytic form can be written as following:

Ψb(x) =
βb√|g| sech(βb|x|+ xb), (5)

where βb measures the slope (the inverse of soliton width) and amplitude of the bound state,
and xb ≡ tanh−1(|V0|/βb) is the shift of effective peak position from the potential center. It is
easy to see that the bound state wavefunction is composed of two soliton-like solutions, but
with different center positions and β . By matching the discontinuity in the wavefunction slopes
with the potential strength, for a given renormalization of the bound state, i.e., βb is fixed,
such bound states exist only in a weak potential limit and disappears when |V0| > βb. Such an
anti-intuitive result originates from the fact that the maximum slope of a BS is limited by its
renormalization due to the nonlinear (interaction) effect. Although the localized bound state
also exists in a repulsive potential defect, it cannot be easily produced in the tunneling process
due to the mismatch in the boundary conditions. Therefore it does not affect the tunneling
property as we discussed above.

Inspired by the numerical simulations of the tunneling process (not shown here), we consider
the following simplified picture of tunneling dynamics in the presence of a bound state, i.e.,
inelastic scattering. To derive an analytical formula for the border when a soliton scatters by
a potential well, we assume: (i) the reflected wavefunction is negligible, (ii) the bound state
appears after the scattering, and (iii) the transmitted wave also has a soliton profile. Since both
the soliton solution and the localized bound state are governed by two parameters, β and v, as
shown in Eq. (2), the relevant parameters to describe a soliton tunneling are therefore: (βi,vi)
for the incident soliton, (βt ,vt) for the transmitted one, and (βb,vb = 0) for the localized bound
state. Since vi is given and βi ≡ |g|/2 is required for the initial unit normalization, now we only
have three parameters to be determined: βb, βt , and vt .

Instead of matching the boundary of wavefunctions during the scattering process, we use the
conservation laws to extract these three unknown parameters in a more general method. Based
on the above three assumptions, we can write down three equations:

2βi

|g| = 1 =
2
|g| (βb −|V0|)+T, (6)

−β 2
i

2
+

v2
i

2
=

−β 2
b

2
(1−T )+

(−β 2
t

2
+

v2
t

2

)
T, (7)

vi =
2βt

|g| vt = Tvt (8)

where we have expressed the transmission coefficient 2βt/|g| as a function of T via the as-
sumption (iii). Equations (6) and (7) represent the conservations of total probability and total
energy by including both the localized bound state and the transmitted soliton. Equation (8) can
be understood as the conservation of current density due to the change of soliton amplitude. We
note that the condition |V0| < βb is required, in order to have T > 0 in Eq. (6). By eliminating
the other two variables, one can obtain T as a function of the normalized potential strength
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Fig. 3. A comparison of transmission coefficient between numerical simulations (solid
lines) and analytical results from Eq. (9) (dashed points). Note that the parameters are
the same as those used in Fig. 2(b).

Ṽ0 ≡ |V0/g| and the normalized initial velocity ṽi ≡ vi/|g|,

T =
Ṽ0(Ṽ0 +1)∓

√
Ṽ 2

0 (Ṽ0 +1)2 − (4ṽ2
i Ṽ0 +3ṽ2

i )

2Ṽ0 +3/2
, (9)

where the “+” solution is physically invalid. From Eq. (9), we find several interesting properties
in the tunneling of a BS through the potential well. First of all, above solution for the transmis-
sion coefficient is real only when |Ṽ0|2(|Ṽ0|+ 1)2 − (4ṽ2

i |Ṽ0|+ 3ṽ2
i ) ≥ 0, or when vi is smaller

than a critical velocity, vc(|V0|), i.e.,

vc

|g| ≡
|V0/g|(|V0/g|+1)√

3+4|V0/g| , (10)

where V0 and vi has to be bounded by requiring T < 1. In Fig. 2(b), the border for the dis-
continuity in the transmission coefficient is compared with our analytical formula and direct
numerical simulations, which results in very good agreement. More importantly, we find that
the critical velocity defined in Eq. (10), i.e., the curve for the discontinuous transmission co-
efficient, shows a rather straight line (although is not exact), instead of a parabolic one for the
potential barrier. Now the major contributions come from the existence of a localized bound
state in this inelastic scattering process.

The validity of our assumptions used above is totally based on the ”soliton-in” and ”soliton-
out” picture, alone with the condition that the formed bound state also has a soliton profile.
Although our simplified theory does predict the locations of transition, in Fig. 3 the transmis-
sion coefficient T we obtained in Eq. (9) is slightly less than the values obtained by direct
numerical simulations. The discrepancy between analytical and numerical data is not surpris-
ing because we have neglected the radiation parts (non-soliton waves) in the transmitted waves,
which cannot be captured in such a simple theory. It should be remarked that the discontinuity
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in the transmission coefficient, the spikes, comes from our numerical errors due to the choice
of different grid sizes in simulations. Last but not least, we restate that the estimations we made
here for the tunneling dynamics of a potential well cannot be applied to the potential barrier, be-
cause the bound state wavefunction supported by a potential barrier has to be a double-humped
one in the profile due to a mismatching boundary condition. On the side of wave nature, the
transmission coefficient is identical both for potential well and potential barrier when one con-
siders a regular (noninteracting) wave tunneling, but on the side of particle nature, it turns out
to be very different in the classical particle picture. This also reflects the non-trivial effect of
interaction (nonlinearity) in the soliton scattering problem.

In conclusion, we have systematically studied the tunneling of a bright soliton subjecting to
a localized potential defect. By performing direct numerical simulations, we obtain a full phase
diagram of the transmission coefficient in terms of the incident velocity and potential strength.
Our results show a fundamentally important transport property, which can be easily observed
in ultracold atoms, nonlinear optics, or even soft-matter systems.
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