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Abstract: We propose and analyze an efficient way to enhance four-wave
mixing (FWM) signals in a four-subband semiconductor quantum well
via Fano-type interference. By using Schrödinger-Maxwell formalism, we
derive explicitly analytical expressions for the input probe pulse and the
generated FWM field in linear regime under the steady-state condition.
With the aid of interference between two excited subbands tunneling to
the common continuum, the efficiency to generate FWM field is found to
be significantly enhanced, up to 35%. More interestingly, a linear growth
rate in the FWM efficiency is demonstrated as the strength of Fano-type
interference increases in presence of the continuum states, which can be
maintained for a certain propagation distance (i.e., 50μm).
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Over the past few decades, quantum interference in the form of electromagnetically induced
transparency (EIT) has attracted tremendous interests in optical communications and quantum
information processing [1,2]. This concept of quantum interference is also extended to a variety
of applications, including lasing without inversion [3], controlling the group velocity of light
pulses [4, 5], and highly efficient schemes for nonlinear optics [6–8]. For examples, nonlinear
optical phenomena based on the quantum interference have been demonstrated for optical soli-
tons [9–11], enhanced nonlinearity [12–14], and multi-wave mixing processes in the ultraslow
propagation regime [15, 16]. In particular, multi-wave mixing process is expected to have a
wide range of applications in diverse fields, such as generation of short-wavelength coherent
radiation, nonlinear spectroscopy with low-light intensity, quantum single-photon nonlinear op-
tics, and quantum information science. However, the low conversion efficiency for multi-wave
mixing in ultraslow propagation regime limits its applications.

In addition to the atomic media, quantum interference phenomena associated with intersub-
band transitions (ISBT) in semiconductor quantum wells (SQW) have also been utilized based
on the analogue between atomic and electronic energy levels [17]. One advantage in the SQW
system is the more accessible Fano-type interference, which arises from the absorption paths of
two states coupled to a common continuum and leads to nonreciprocal absorptive and disper-
sive profiles [18, 19]. In this work, with the aid of interference between two excited subbands
tunneling to the common continuum, we propose and analyze an efficient way to enhance four-
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Fig. 1. Schematic band diagram of our asymmetric double SQW structure with a four-
subband | j〉 ( j = 1− 4) configuration. Here, Fano-type interference occurs in the optical
absorption from the ground state |1〉 to two continuum resonant states |3〉 and |4〉. Related
energy levels and the corresponding wave functions are denoted by dashed- and solid-lines,
respectively. The SQW structure interacts with two continuous-wave (cw) pump lasers (fre-
quencies ωc1, ωc2 and Rabi frequencies 2Ωc1, 2Ωc2) and a probe pulse (frequency ωp and
Rabi frequency 2Ωp), in order to generate a new FWM pulse field (frequency ωm and Rabi
frequency 2Ωm).

wave mixing (FWM) signals in SQW with a four -subband configuration. Different from using
quantum destructive interference induced by the continuous-wave (cw) control field [20, 21]
or the resonant tunneling [22], our scheme based on one weak probe pulse interacting with
two cw pump fields is analyzed for the enhanced FWM generation. By solving the coupled
Schrödinger-Maxwell equations, a time-dependent analysis in the ultraslow propagation regime
is performed for the generated FWM field. We show the corresponding analytical expressions
explicitly, for the probe and generated FWM pulses, as well as their phase shifts, absorption
coefficients, group velocities, and the related conversion efficiency, respectively. Owing to the
existence of Fano-type interference, our results illustrate the possibility to have a maximum
FWM conversion efficiency up to 35%. Last but not least, a linear growth rate in the FWM
efficiency is demonstrated as the strength of Fano-type interference increases in presence of the
continuum states, which can be maintained for a certain propagation distance (i.e., 50μm).

Our proposed SQW structure includes a deep well and a shallow well, as illustrated in Fig. 1.
The left shallow well and right deep well may be made by an Al0.07Ga0.93As layer on the GaAs
layer, separated by a Al0.32Ga0.68As potential barrier. In general, one can obtain the eigenener-
gies for the four conduction subbands by solving the effective mass Schrödinger equations. The
energies of two ground subbands |1〉 and |2〉 are assumed to be E1 = 51.53 meV and E2 = 97.78
meV, respectively. Two closely spaced delocalized subbands |3〉 and |4〉, with the eigenenergies
E3 = 191.3 meV and E4 = 233.23 meV, are created by mixing the first excited subbands in the
shallow well |se〉 and in the deep well |de〉 through the resonant tunneling. The subbands |3〉 and
|4〉 can be represented by a coherent superposition of the first excited subbands in shallow and
deep wells [17–19]. They are |3〉= (|se〉− |de〉)/√2 and |4〉= (|se〉+ |de〉)/√2. In Fig. 1, the
dashed-lines represent the corresponding energies; while the solid-curves show the wave func-
tions for four subbands. This SQW system is driven by two continuous-wave (cw) pump laser,
with the central frequency ωc1,c2 and wavevector kc1,c2. Simultaneously, a weak probe pulse
with the central frequency ωp and wavevector kp, and a FWM pulse field with the central fre-
quency ωm and wavevector km construct the wave-mixing process |1〉→ |3〉→ |2〉→ |4〉→ |1〉.

To simplify the physical picture, in the following analysis, we assume that all the subbands
have the same effective mass. The SQW structure is also designed with a low electron sheet
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density, in order to neglect the electron-electron interactions. In the interaction picture, with
the rotating-wave approximation and the electric-dipole approximation, the interaction Hamil-
tonian of this system can be written as (h̄ = 1):

HI
int = Δc1 |2〉〈2|+Δp |3〉〈3|+Δc2 |4〉〈4|− (Ωpeikp·r |3〉〈1|+Ωc1eikc1·r |3〉〈2|

+ Ωc2eikc2·r |4〉〈2|+Ωmeikm·r |4〉〈1|+H.c.), (1)

where the detuning frequencies are defined as Δp = (E3 − E1)− ωp, Δc1 = (E2 − E1)−
(ωp −ωc1), and Δc2 = (E4 − E1)− (ωp −ωc1 +ωc2), respectively. The corresponding one-
half Rabi frequency for the relevant laser-driven intersubband transitions is denoted as
Ωn (n = p,c1,c2,m). Explicitly, they are Ωp = μ31Ep/2h̄, Ωc1 = μ32Ec1/2h̄, Ωc2 = μ24Ec2/2h̄,
and Ωm = μ41Em/2h̄, with μi j (i, j = 1− 4; i �= j) denoting the transition dipole moment be-
tween subbands |i〉 ↔ | j〉 and Ep,c1,c2,m being the slowly varying electric field amplitude of the
corresponding fields.

The state wave function is assumed to be in the form of |Ψ〉 = A1 |1〉+A2ei(kp−kc1)·r |2〉+
A3eikp·r |3〉+A4ei(kp−kc1+kc2)·r |4〉, where Aj ( j = 1,2,3,4) means the time-dependent probabil-
ity amplitude for finding particles in the corresponding subband. Then, we substitute |Ψ〉 into
the Schrödinger equation i∂Ψ/∂ t = HI

intΨ, and have the equation for the probability ampli-
tudes,

i
∂A1

∂ t
=−Ωp

∗A3 −Ωm
∗eiδk·rA4, (2)

i
∂A2

∂ t
= Δc1A2 − iγ2A2 −Ωc1

∗A3 −Ωc2
∗A4, (3)

i
∂A3

∂ t
= ΔpA3 − iγ3A3 −ΩpA1 −Ωc1A2 + iζA4, (4)

i
∂A4

∂ t
= Δc2A4 − iγ4A4 −Ωc2A2 −Ωme−iδk·rA1 + iζA3. (5)

Here, δk = kp − kc1 + kc2 − km denotes a phase mismatching factor. We also include the de-
cay rates γi phenomenologically in the above equations. The total decay rates are given by
γi (i = 1−4) = γil + γid , where the population decay rates γil are primarily due to the longitu-
dinal optical phonon emission events at low temperature and the pure dipole dephasing rates
γid are assumed to be a combination of quasi-elastic interface roughness scattering or acous-
tic phonon scattering. The population decay rates γil can be calculated [19]: upon solving the
effective mass Schrödinger equation with outgoing waves at infinity, we obtain a set of com-
plex eigenvalues whose real and imaginary parts yield respectively, the quasibound state energy
levels and resonance widths. We should note that the population decay rates γ3l and γ4l are as-
sumed to be the decay rates from the subbands |3〉 and |4〉 to the continuum by tunneling in
the presence of the electronic continuum. When the electronic continuum is not included in the
asymmetric double SQW structure, the population decay rates γ3l and γ4l are assumed to be the
decay rates from the subbands |3〉 and |4〉 to the lower states. For the present asymmetric double
quantum well structure, the population decay rates turn out to be γ3l = 1.58meV, γ4l = 1.5meV
in presence of the electronic continuum, while the population decay rates are γ3l ≈ γ4l = 1meV
in absence of the electronic continuum. For the temperatures up to 10 K, the electric density
may be kept as low as 1024m−3 [17]. In this scenario, the dephasing rates can be estimated to
be γ3d = 0.32meV, γ4d = 0.3meV. A comprehensive treatment of the decay rates would involve
incorporation of the decay mechanisms in the Hamiltonian of the system. However, we have
adopted the phenomenological approach of treating the decay mechanisms just as those done
in Refs. [23–26]. It is worth to be noted that a cross coupling term between the excited states
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|3〉 and |4〉 is introduced by ζ =
√γ3l · γ4l [17–19] in the presence of the electronic continuum.

We remark that p = ζ/√γ3 · γ4 represents the strength of Fano-type interference, for which the
values p = 0 and p = 1 correspond to no interference and perfect interference, respectively.

In the limit of slowly varying amplitude approximation, the input probe pulse and the gen-
erated FWM field propagate along the ”z” direction (i.e., δk · r = δk · z ) according to the 1D
wave equations:

∂Ωp

∂ z
+

1
c

∂Ωp

∂ t
= iκpA3A1

∗, (6)

∂Ωm

∂ z
+

1
c

∂Ωm

∂ t
= iκmA4A1

∗, (7)

where we have assumed δk = 0 for the sake of simplicity. The parameters κp =

2πNωp|μ31|2/h̄c and κm = 2πNωm|μ41|2/h̄c are the propagation constants, and the electron
concentration in SQW is denoted by N.

In principle, above equations of probability amplitude shown in Eqs. (2)–(5) must be solved
simultaneously with Maxwell’s equation shown in Eqs. (6)–(7) in a self-consistent manner.
Before solving those nonlinear equations, let us first examine the linear excitation of the system,
which provides useful hints for the weak nonlinear theory. As a weak perturbation, we assume
that the Rabi frequencies of the probe pulse and FWM field, 2Ωp,m, are much smaller than that
of the cw pump fields 2Ωc1,c2. When the electrons are initially populated in the ground state,
|1〉 (i.e., A1 
 1), on can perform the Fourier transformations for Eqs. (2)–(7) by defining

Aj(t) =
1√
2π

∫ ∞

−∞
a j(ω)exp(−iωt)dω, j = 2,3,4 (8)

Ωp,m(t) =
1√
2π

∫ ∞

−∞
Λp,m(ω)exp(−iωt)dω, (9)

with the Fourier transform variable ω . Then Eqs. (2)–(7) become

(ω −Δc1 + iγ2)a2 +Ωc1
∗a3 +Ωc2

∗a4 = 0, (10)

(ω −Δp + iγ3)a3 +Ωc1a2 − iζa4 =−Λp, (11)

(ω −Δc2 + iγ4)a4 +Ωc2a2 − iζa3 =−Λm, (12)
∂Λp

∂ z
− i

ω
c

Λp = iκpa3a1
∗, (13)

∂Λm

∂ z
− i

ω
c

Λm = iκma4a1
∗, (14)

where a j and Λp,m are the Fourier transforms of Aj and Ωp,m, respectively. The solutions for
Eqs. (10)–(14) can be derived as:

a2 =− iζ Ω∗
c1Λm +(ω −Δc2 + iγ4)Ω∗

c1Λp + iζ Ω∗
c2Λp +(ω −Δp + iγ3)Ω∗

c2Λm

D(ω)
, (15)

a3 =
−DP (ω)

D(ω)
Λp +

D1 (ω)

D(ω)
Λm, (16)

a4 =
−Dm (ω)

D(ω)
Λm +

D2 (ω)

D(ω)
ΛP. (17)

Here, we have defined shorthanded notations: D1(ω), D2(ω), Dp(ω), Dm(ω), and D(ω), which
have the forms D1(ω) = iζ (ω −Δc1 + iγ2)+Ωc1Ω∗

c2, D2(ω) = iζ (ω −Δc1 + iγ2)+Ωc2Ω∗
c1,
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Dp(ω) = |Ωc2|2 − (ω − Δc1 + iγ2)(ω − Δc2 + iγ4), Dm(ω) = |Ωc1|2 − (ω − Δc1 + iγ2)(ω −
Δp + iγ3), and D(ω) = −ζ 2(ω −Δc1 + iγ2)− (ω −Δc1 + iγ2)(ω −Δp + iγ3)(ω −Δc2 + iγ4)+

iζ Ωc2Ω∗
c1 +(ω −Δc2 + iγ4)|Ωc1|2 + iζ Ωc1Ω∗

c2 +(ω −Δp + iγ3)|Ωc2|2, respectively.
With the given initial conditions for the probe pulse and FWM field, i.e., Λp (0,ω) and

Λm (0,ω) = 0, we can have the analytic solutions for these two weak fields:

Λp(z,ω) = Λp (0,ω)
(
U+(ω)eizK+(ω)−U−(ω)eizK−(ω)

)
, (18)

Λm(z,ω) = Λp (0,ω)S(ω)
(

eizK−(ω)− eizK+(ω)
)
, (19)

where

K± (ω) =
ω
c
− Dm(ω)κm +Dp(ω)κp ±

√
G(ω)

2D(ω)
= K± (0)+K(1)

± (ω)+O
(
ω2) , (20)

U± (ω) =
Dp(ω)κp −Dm(ω)κm ±√

G(ω)

2
√

G(ω)
=U± (0)+O(ω) , (21)

S (ω) =
κmD2(ω)√

G(ω)
= S(0)+O(ω) , (22)

with G(ω) = (Dp(ω)κp −Dm(ω)κm)
2 +4D1(ω)D2(ω)κmκp. Λp,m(0,ω) are the initial condi-

tions for the pulsed probe and generated FWM fields at the entrance of the SQW structures
z = 0. In addition, it is noted that there exist two modes (K± modes) described by the linearized
dispersion relations K = K+(ω) and K = K−(ω), respectively. Typically, one can expand the
dispersion relation around the center frequencies of the probe pulse and FWM field; that is,
ω = 0. In the following, we also neglect higher-order terms, i.e., O

(
ω2

)
in K± (ω) and O(ω)

in S (ω). In general, Re[K±(0)] and Im[K±(0)] represent the phase shifts and absorption co-
efficients per unit length, respectively. The group velocities (Vg±) for K± modes are given by

1/Re[K(1)
± ]. Then, by applying an inverse Fourier transform to Λp,m, we have

Ωp,m(z, t) =
1√
2π

∫ ∞

−∞
exp(−iωt)Λp1,p2(z,ω)dω, (23)

and arrive at the linearized results for the probe pulse and FWM field:

Ωp(z, t) = Ωp (0,η+)U+ (0)eizK+(0)−Ωp (0,η−)U− (0)eizK−(0), (24)

Ωm (z, t) = S(0)
(

Ωp (0,η−)eizK−(0)−Ωp (0,η+)eizK+(0)
)
. (25)

Here, η± = t − z/Vg± and Ωp (t) ≡ Ωp (z = 0, t) is the initial probe pulse at z = 0. The ex-
pressions shown in Eqs. (24)–(25) give the propagation dynamics for the probe pulse and the
generated FWM field in our proposed SQW system, based on which we use practical parame-
ters to demonstrate examples to enhance FWM signals via Fano-type interference.

For the temperatures up to 10 K, the electric density may be kept as low as 1024m−3 [17].
In this scenario, the dephasing rates can be estimated to be γ3d = 0.32meV, γ4d = 0.3meV.
The population decay rates are calculated by solving effective mass Schrödinger equation.
For our QWs with continuum considered above, the population decay rates turn out to be
γ2l = 2.36× 10−6μeV, γ3l = 1.58meV, γ4l = 1.5meV, while the other set of decay parame-
ters without continuum are γ3l = γ4l = 1meV. As a result, we obtain p = 0 and p = 0.83 for
the strength of Fano-type interference represent without and with continuum states, respec-
tively. In addition, we choose Δc1 = 1meV, Δp = Δc2 = 0, and κm = κp = 9.6×103μm−1meV.
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Fig. 2. Amplitudes of the probe pulse and the generated FWM field shown as a function of
the depth z when penetrating into the SQW system (a) without including continuum states:
γ3l = γ4l = 1meV and p = 0; (b) with including continuum states: γ3l = 1.58meV, γ4l =
1.5meV, and p = 0.83. Other parameters used are γ2 = 2.36× 10−6μeV, γ3d = 0.32meV,
γ4d = 0.3meV, |Ωc1| = 20 meV, |Ωc2| = 20 meV, Δc1 = 1meV, Δp = Δc2 = 0, and κm =
κp = 9.6×103μm−1meV, respectively.

Within this practical parameter set, we plot in Fig. 2 the amplitudes of probe and FWM pulses
as a function of the propagation distance z for the cases (a) without and (b) with continuum
states. From Fig. 2, one can find that the amplitude of probe pulse decreases monotonically as
the propagation distance z increases; while the generated FWM field increases monotonically.
Subsequently, after a critical propagation distance, the amplitudes of probe pulse and FWM
field reach the same value. This can be explained by using the multiphoton quantum destructive
interference, through the coupling excitation pathway |1〉 → |3〉 and the feedback excitation
pathway |1〉→ |3〉 mediated by |4〉 [8]. Moreover, compared to the absence of continuum sates,
as shown in Fig. 2(a), the amplitude remains unchanged with the introduction of the continuum
sates, as shown in Fig. 2(b). Above interesting results come from the Fano-type interference
caused by tunneling from the excited subbands to the continuum. This interference modifies
the neighboring transitions and thus affects the multiphoton quantum destructive interference
between the two different coupling pathways. When the amplitudes of probe pulse and FWM
field reach the same value, the feedback excitation pathway to the subband |4〉 becomes impor-
tant, which is π out of phase with respect to the coupling excitation pathway. These processes
simultaneously lead to the suppression for the subband |3〉. As the propagation distance z in-
creases, the amplitudes of |3〉 and |4〉 sacrifice from the absorption, resulting in the decay shown
in Fig. 2(a). However, the decay in the amplitudes Ωm,p can be suppressed, with the existence of
a Fano-type interference, as shown in Fig. 2(b). As a matter of fact, this is a consequence from
the competition between the destructive quantum coherence in the multiphoton interference and
the constructive quantum coherence in the Fano-type interference.

According to Eqs. (24)– (25), both K+ and K− modes will simultaneously be excited in the
SQW medium even only with one input field. However, there exists some parameter regimes
where one of the two modes always decays much faster than the other. In Fig. 3, we show
one example that the absorption coefficients α± = Im[K±(0)] differ significantly. Here, the
ratio between two absorption coefficients α−/α+ = Im[K−(0)]/Im[K+(0)] is plotted versus
the amplitude in the cw pump field |Ωc2| for different control field amplitudes |Ωc1| in the
absence of the electronic continuum, see Fig. 3(a). In order to examine the effect of Fano-type
interference on the absorption coefficients, we plot in Fig. 3(b) the ratio α−/α+ versus the
amplitude in the cw pump field |Ωc2| with and without including the continuum states. It can be
obviously found that the absorption coefficient ratio decreases as the amplitudes of two pump
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Fig. 3. The ratio between absorption coefficients α−/α+ for two different modes shown
as a function of the amplitude |Ωc2| in the cw control field c2: (a) for different control
field amplitudes |Ωc1| in the absence of the continuum state and (b) for different case,
i.e., without or with including the continuum sate for a fixed value of |Ωc1| = 20 meV.
Without continuum states (p = 0): γ3l = γ4l = 1meV; with continuum states (p = 0.83):
γ3l = 1.58meV and γ4l = 1.5meV. Other parameters used are γ2 = 2.36×10−6μeV, γ3d =
0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δp = Δc2 = 0, and κm = κp = 9.6×103μm−1meV,
respectively.

fields increase. Moreover, even for p = 0.83 in presence of the continuum state, we have α− �
α+. In other words, Fig. 3 illustrates that the K+ mode decays much more quickly than the K−
mode. Thus, one can safely neglect this faster variable K+ after a characteristic propagation
distance. As a consequence, the two weak pulses propagate with the matched group velocity
Vg =Vg−. By neglecting the K+ mode, the probe and FWM pulses Ωp,m can be rewritten as

Ωp(z, t) =−Ωp (0, t − z/Vg)U− (0)eizβ−zα , (26)

Ωm (z, t) = S(0)Ωp (0, t − z/Vg)eizβ−zα , (27)

where Vg = Vg− = 1/Re[K(1)
− ] is the group velocity, α = Im[K− (0)] denotes the absorption

coefficient, and β = Re[K− (0)] represents the phase shift per unit length. Based on Eqs. (26)–
(27), one can see that the probe pulse and the generated FWM field travel at a ultraslow group
velocity.

In Fig. 4, we plot the group velocity Vg/c as a function of pump field amplitude |Ωc2| for
different sets of cw amplitude |Ωc1|. The group velocity exhibits the similar trends for different
case, i.e., with or without continuum states. However, in the presence of the continuum states
(p = 0.83), the slower group velocity can be achieved, i.e., on the order of 10−4c as shown in
Fig. 4(b). It should be noted that a further reduced group velocity can be obtained by choosing
the related parameter values appropriately.

As illustrated in Fig. 3 and Fig. 4, the probe pulse and the generated FWM field can travel
through the SQW medium with the same temporal profile and at a ultraslow group velocity
within a characteristic distance. Now, we turn to the conversion efficiency for the FWM field.
Based on the definition in Ref. [27], the efficiency for the generated FWM field can be measured

as ρ =
∣∣∣E(out)

m /E(in)
p

∣∣∣2, where E(out)
m is the electric field Em

(
|Em|2 = 4h̄2|Ωm|2/|μ31|2

)
for the

generated FWM field at the exit z = L and E(in)
p

(∣∣Ep
∣∣2 = 4h̄2

∣∣Ωp
∣∣2/|μ31|2

)
is the electric field

for the probe pulse at the entrance z = 0. According to Eqs. (26) – (27), the efficiency for FWM
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Fig. 4. Relative group velocity Vg/c versus the cw amplitude Ωc2 for different pump fields
|Ωc1|, (a) without including continuum states: γ3l = γ4l = 1meV and p = 0; and (b) with
including continuum states: γ3l = 1.58meV, γ4l = 1.5meV, and p = 0.83. Other parameters
used are γ2 = 2.36×10−6μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δp = Δc2 = 0,
and κm = κp = 9.6×103μm−1meV, respectively.

signal has the form,

ρ =

(
Em

Ep

)2

=
|μ31|2
|μ41|2

κ2
m(B)

2

4κmκp(B)
2 +(A)2 e−2αL, (28)

with A = κm|Ωc1|2 − κp|Ωc2|2 + iκmΔc1γ3 + κmγ2γ3 − iκpΔc1γ4 − κpγ2γ4, and B = Ωc2Ω∗
c1 −

iζ Δc1 − ζ γ2. By means of the relation μ2
31/μ2

41 = κpωm/κmωp, it is found that the FWM effi-
ciency ρ can have a simple form, ρ =

(
ωm · e−2αL

)
/(4ωp).

To study the dependence on different system parameters for the generated FWM efficiency,
first of all, we analyze how the amplitude of cw pump fields modifies the conversion efficiency
in Fig. 5. Here, the FWM efficiency ρ is plotted as a function of the amplitude Ωc2 of the cw
pump field c2, for the different cw pump fields c1 without and with including the continuum
states, shown in Fig. 5(a) and 5(b), respectively. One can see that the amplitude of two cw
pump fields and the Fano-type interference caused by the tunneling from the excited subbands
to the continuum both have an obvious influence on the FWM conversion efficiency. Moreover,
a maximum value in the FWM conversion efficiency can be achieved when |Ωc1| = |Ωc2|. In
our simulations, even for a deep penetration distance into the SQW structure, such as L =
6μm, one can still have the conversion efficiency up to ρ > 35%. Direct comparison in Figs.
5(a) and (b) implies that the maximum value in the conversion efficiency can be enhanced
when the continuum states are included. In other words, the Fano-type interference results from
the resonant tunneling from the excited subbands to the continuum opens the channel for the
FWM process. Different from previous FWM schemes based on EIT configuration, parameters
for the electronic subbands in SQW systems can be engineered to give a desired strength of
interference by utilizing the so-called structure coherent control in design [17].

To give a better insight on the FWM conversion efficiency from the amplitudes of two cw
pump fields, in Fig. 6, we show the conversion efficiency ρ as a function of the amplitudes
in two cw pump fields |Ωc1|/|Ωc2| without including the continuum states. The results shown
in Fig. 6 clearly verify that the condition to achieve a maximum efficiency happens around
|Ωc1| = |Ωc2|. Although, for the same amplitudes of two cw pump fields the highly efficiency
can be obtained, the extent of the robustness is small. In the presence of the Fano-type inter-
ference caused by tunneling from the excited subbands to the continuum, in Fig. 7, we show
the conversion efficiency ρ as a function of the strength of the Fano-type interference p for
the different amplitudes of two pump fields. For simplicity, here we have assumed the popu-
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Fig. 5. FWM conversion efficiency ρ versus the amplitude |Ωc2| for different cw pump
fields: |Ωc1| = 15meV, |Ωc1| = 20meV, |Ωc1| = 25meV, (a) without including contin-
uum states: γ3l = γ4l = 1meV and p = 0; and (b) with including continuum states:
γ3l = 1.58meV, γ4l = 1.5meV, and p = 0.83. Other parameters used are L = 6μm,
γ2 = 2.36× 10−6μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δp = Δc2 = 0, and
κm = κp = 9.6×103μm−1meV, respectively.

Fig. 6. The conversion efficiency ρ for the generated FWM field as a function of the am-
plitude of two cw pump fields (|Ωc1| and |Ωc2|) without including the continuum states.
Other parameters used are p = 0, L = 6μm, γ2 = 2.36×10−6μeV, γ3l = γ4l = 1meV, γ3d =
0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δp = Δc2 = 0, and κm = κp = 9.6×103μm−1meV,
respectively.

lation decay rates from subbands |3〉 and |4〉 to the continuum states remain unchanged (i.e.,
γ3l = 1.58 meV and γ4l = 1.5 meV), and the different values of interference strength p can be
obtained by varying total decay rates γ3 and γ4. Interestingly enough, as shown in Fig. 7, the
conversion efficiency for the generated FWM field increases linearly as the strength of Fano-
type interference increases for a certain propagation distance. It is the Fano-type interference
that suppresses the population in the subbands |3〉 and |4〉, resulting in the reduction of the cor-
responding absorption in the generated FWM field. Again, the Fano-type interference leads to
the enhancement of conversion efficiency. However, the linear increasing of the maximal con-
version efficiency has robustness only in a small region of two cw pump fields intensities. As
illustrated in Fig. 7, the increasing effect will be not obviously if the amplitudes of two pump
fields increases continuously.

Since the probe field and the generated FWM signal are in the form of optics pulses, here, we
also consider the influence of propagation distance on the relevant conversion efficiency. To do
this, we assume that the probe field at the entrance of the SQW structure has a Gaussian pulse

#223802 - $15.00 USD Received 26 Sep 2014; revised 26 Oct 2014; accepted 2 Nov 2014; published 14 Nov 2014
(C) 2014 OSA 17 November 2014 | Vol. 22,  No. 23 | DOI:10.1364/OE.22.029179 | OPTICS EXPRESS  29188



0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

p

E
ffi

ci
en

cy
 ρ

 

 

|Ω
c1

|=|Ω
c2

|=15meV

|Ω
c1

|=|Ω
c2

|=20meV

|Ω
c1

|=|Ω
c2

|=25meV

Fig. 7. (Color online) The conversion efficiency ρ for the generated FWM field as a function
of the strength of the Fano-type interference p for the different amplitudes of two pump
fields in presence of the continuum states. Other parameters used are L = 6μm, γ2 = 2.36×
10−6μeV, γ3l = 1.58meV, γ4l = 1.5meV, Δc1 = 1meV, Δp = Δc2 = 0, and κm = κp =
9.6×103μm−1meV, respectively.

Fig. 8. Surface plot of the FWM conversion efficiency ρ as a function of the normalized
time t/τ and the propagation distance z for (a) without including continuum states: γ3l =
γ4l = 1meV and p = 0; and (b) with including continuum states: γ3l = 1.58meV, γ4l =
1.5meV, and p = 0.83. Other parameters used are |Ωc1| = |Ωc2| = 20 meV, γ2 = 2.36×
10−6μeV, γ3d = 0.32meV, γ4d = 0.3meV, Δc1 = 1meV, Δp = Δc2 = 0, and κm = κp =
9.6×103μm−1meV, respectively.

profile, i.e., Ωp (0, t) = Ωp (0,0)e−(t
2/τ2), with the pulse width τ . Now, the conversion effi-

ciency can be rewritten as ρ = |Ωm(z, t)/Ωp(0,0)|2. The results from numerical simulations for
the corresponding FWM conversion efficiency are shown in Fig. 8, with the pulse width fixed as
τ = 10 meV −1. It can be seen clearly that the conversion efficiency ρ decreases significantly as
the propagation distance increases when the Fano-type interference caused by tunneling from
the excited subbands to the continuum is not included, (a) p = 0; while it decreases slowly
for a longer propagation distance due to the existence of the Fano-type interference when the
continuum states are included, (b) p = 0.83. From the comparison between Fig. 8(a) and Fig.
8(b), the presence of a Fano-type interference indeed modifies not only the linear optical prop-
erty, but also the FWM process. As shown in Fig. 4, the Fano-type interference contributes to
slow down the matched group velocity. Consequently, such a reduced group velocity ensures a
longer interaction time, and leads to maintain a higher FWM conversion efficiency for a longer
propagation distance.

In conclusion, we have performed a time-dependent analysis for the four-wave mixing
(FWM) process in the ultraslow propagation regime, by considering the intersubband transi-
tions in an asymmetric semiconductor double quantum well system. By including the Fano-type
interference caused by the tunneling from the excited subbands to the electronic continuum, we
demonstrate an efficient way to generate FWM field by means of two continuous-wave (cw)
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pump fields and a weak probe pulse. Through the Schrödinger-Maxwell formalism, we also
give the corresponding analytical expressions for the input probe pulse and the generated FWM
field in the linear regime under the steady-state condition. In presence of the Fano-type inter-
ference, the conversion efficiency of FWM field is revealed to be enhanced significantly, up
to 35%. Take the advantages of flexibilities in semiconductor structures, our results provide a
practical opportunity to implement optical modulated solid-state devices.

Acknowledgments

The research is supported in part by National Natural Science Foundation of China under Grant
Nos. 11374050 and 61372102, by Qing Lan project of Jiangsu, and by the Fundamental Re-
search Funds for the Central Universities under Grant No. 2242012R30011.

#223802 - $15.00 USD Received 26 Sep 2014; revised 26 Oct 2014; accepted 2 Nov 2014; published 14 Nov 2014
(C) 2014 OSA 17 November 2014 | Vol. 22,  No. 23 | DOI:10.1364/OE.22.029179 | OPTICS EXPRESS  29190




