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Abstract: We propose an all-optical-control scheme to simultaneously realize parity-time
(PT )-symmetric and PT -antisymmetric susceptibilities along the propagation direction of
light by applying an external magnetic field. Through the light-atom interaction within a double-
Λ configuration, the resulting position-dependent susceptibilities for the interacting fields can be
manipulated through the relative phase between them. In particular, for the probe field, one can
switch its refractive index from the PT -symmetry to PT -antisymmetry by just varying the
phase. Based on the quantum interference among transition channels in a closed loop, analytical
formulas are also derived to illustrate the conditions for PT -symmetry and PT -antisymmetry.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Even though parity-time (PT ) symmetry was initially introduced to generalize quantum
mechanics with Hermitian Hamiltonians to non-Hermitian ones [1], quantum entanglement
gives negative results for the no-signalling principle when applying the local PT -symmetric
operation on one of the entangled particles [2]. Nevertheless, PT -symmetry could still be used
as an interesting model for open systems in the classical limit [3].

In classical optics, with the correspondence between paraxial wave equation and Schrodinger
equation, one can realize optical PT -symmetric systems by asking the refractive index in the
medium to satisfy some specific symmetries. For non-magnetic materials, PT -symmetric
condition is said to be satisfied when the optical susceptibility χ has the form: χ

(
η
)
= χ∗

(
−η
)
.

Here, the spatial coordinate η can be a transverse or longitudinal one, with respect to the
propagation direction. One can see that such a sufficient condition for PT -symmetry requires
an even function in the real part of susceptibility, along with an odd function in the imaginary
part. The latter one corresponds to a perfect balance between gain and loss [4, 5]. Moreover, in
stead of embedding gain or loss mechanics to implement PT -symmetry [6], one can also have
PT -antisymmetry by asking the susceptibility in the form, χ

(
η
)
=−χ∗

(
−η
)

[7, 8].
With the addition degree of freedom from a non-conservative Hamiltonian, as well as the

existence of exceptional points to induce phase transition due to the broken PT -symmetry [9],
optical PT -symmetric devices are studied theoretically and experimentally for directional
couplers [10, 11], optical lattices [12–14], soliton dynamics [15], wave localization [16, 17],
Bloch oscillations [18], and light diffraction [19]. In addition to play with the optical refractive
index directly, PT -symmetric conditions can also be realized in different physical systems,
such as whispering-gallery microcavities [20], moving media [21], RLC circuits [22], and
optomechanically-induced transparency systems [23].
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In terms of optical refractive index, it is well-known that one can manipulate optical prop-
erties of a probe field through the light-atom interaction [24]. As a consequence, a variety
of configurations for atom-photon interactions have been proposed and demonstrated to real-
ize PT -symmetric systems in different experimental settings [25–29]. Even though there
already exist many schemes to have PT -symmetry and PT -antisymmetry, a single scheme
to simultaneously realize both of them is still missing. Here, we propose a scheme to realize
PT -symmetric and PT -antisymmetric susceptibilities for probe and signal fields passing
through an atomic system in a double-Λ configuration [30]. By using an external magnetic field
with its magnitude linearly increasing along the propagation direction, the position-dependent
Zeeman effect can map the intrinsic symmetry or antisymmetry in the optical susceptibilities
with respect to the frequency detuning into the direction of propagation. Then, PT -symmetry
and PT -antisymmetry in the susceptibilities can be controlled by all optical approaches. Si-
multaneous realizations of PT -symmetry-antisymmetry or PT -antisymmetry-antisymmetry
in the probe-signal fields will be illustrated by varying the relative phase between these two
fields. The potential applications of PT -symmetry and PT -antisymmetry in the longitudinal
direction include coherent perfect absorbers [31–34], unidirectional invisibility [35–38], and
unidirectional light reflection [39]. Further, the PT -symmetry in the longitudinal direction has
the flexibility for real time control, all optical tuning, and re-configuration.

This paper is organized as following. In Sec. 2, we will give the light-atom interaction
Hamiltonian for a double-Λ configuration, with the corresponding optical susceptibilities for
probe and signal fields, respectively. Then, in Sec. 3, illustrations on the simultaneous realization
of PT -symmetry and PT -antisymmetry in the susceptibilities of probe and signal fields are
shown along the propagation distance. The underline physical picture and discussions will be
given with the analytical formula in Sec. 4. Finally, we summary this work in Sec. 5.

2. Field susceptibilities in a double-Λ atomic system

We consider a photon-atom interaction system with allowable transitions in a four-level double-Λ
configuration, as shown in Fig. 1. Here, we have four interacting fields, including two weak
(denoted as probe and signal) fields and two strong (denoted as coupling and driving) fields.
The corresponding transitions are characterized by its Rabi frequencies, denoted as Ωp, Ωs,
Ωc, and Ωd , respectively. Then, the one-photon detunings of these four fields are defined as
∆p = ωp−ω31, ∆s = ωs−ω41, ∆c = ωc−ω32, and ∆d = ωd −ω42, where the notations ωµ

(µ ∈ p,s,c,d) and ωµν ≡
(
Eµ −Eν

)
/ h̄ represent the field frequency and the corresponding

energy difference between energy states |µ〉 and |ν〉, respectively.
With the rotating wave approximation, one can write down the interaction Hamiltonian for

this four-level atomic system in a double-Λ configuration:

Ĥ =−h̄
[
∆p|3〉〈3|+

(
∆p−∆c

)
|2〉〈2|+∆s|4〉〈4|

]
(1)

− h̄
2
(
Ωp|3〉〈1|+Ωc|3〉〈2|+Ωs|4〉〈1|+Ωd |4〉〈2|+H.C.

)
.

Here, we have asked the detunings to satisfy the condition: ∆p+∆d−∆s−∆c = 0, corresponding
to a zero net detuning. Moreover, as the intensities of probe and signal fields are much weaker
than those of coupling and driving fields, i.e., Ωp,Ωs � Ωc,Ωd , one can safely derive the
equations of motion for density matrix elements in the lowest order, which have the form:

∂

∂ t
ρ21 =−γ̃21ρ21+

i
2
Ω
∗
cρ31+

i
2
Ω
∗
dρ41, (2)

∂

∂ t
ρ31 =−γ̃31ρ31+

i
2
Ωcρ21+

i
2
Ωp, (3)

∂

∂ t
ρ41 =−γ̃41ρ41+

i
2
Ωdρ21+

i
2
Ωs. (4)

                                                                                                Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 21970 



│1 
│2 

│3 

│4 

Δ p

Δs

Δc

Δd

Ωp
Ωs

Ωc
Ωd

Fig. 1. Our four-level atomic system in a double-Λ configuration. Here, the four fields
are denoted as Ωs, Ωp, Ωc, and Ωd , with the corresponding Rabi frequencies for signal,
probe, coupling, and driving fields, respectively. The one-photon detunings of these fields
are characterized by ∆s, ∆p, ∆c, and ∆d , respectively.
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Fig. 2. Setup of our photon-light interaction scheme, where four fields propagate along
the z-direction and the atomic ensemble having photon-atom interaction in a double-Λ
configuration, as shown in Fig. 1. With a magnetic field B(z), which has its magnitude
linearly increasing along the propagation z-direction, the resulting susceptibilities for probe
and signal fields can support a PT -symmetry or PT -antisymmetry in the longitudinal
z-direction.

Here, decays in the upper atomic levels (|e〉, e = 2,3,4) to the ground state (|1〉) are introduced
phenomenologically through γ̃21 ≡ γ21− i

(
∆p−∆c

)
, γ̃31 ≡ γ31− i∆p, and γ̃41 ≡ γ41− i∆s.

Macroscopically, the susceptibility for probe field can be found by collecting the atomic
matrix component ρ31, i.e., χp =

(
n℘2

31
/

ε0h̄Ωp
)

ρ31 with the number density of atomic medium,
n = NV , and the atomic dipole transition from |1〉 to |3〉, ℘31. For steady states, one can ignore
the time derivative terms and obtain the susceptibility of probe field by solving Eqs. (2)-(4), i.e.,

χp = χp0

[
i
(
4γ̃21γ̃41Ωp+ |Ωd |2Ωp−ΩcΩ

∗
dΩs
)

4γ̃21γ̃31γ̃41+ γ̃41|Ωc|2+ γ̃31|Ωd |2

]
, (5)

where we have defined χp0 ≡ n℘2
31
/

2ε0h̄Ωp =
(
α
/

8
)(

λp
/

L
)(
Γ
/
Ωp
)
, with the optical density

of atomic ensemble denoted by α = nσL, the wavelength of probe field λp, the length L, the
absorption cross section of probe field σ = 3λ 2

p
/

2π2, and the excited state spontaneous decay
rate Γ (associated with γ31 = γ41 = 1.25Γ). It is noted that in general the Rabi frequency of each
field is a complex number. As shown in Fig. 1, due to such a closed-loop configuration for
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Fig. 3. Real (Left-column) and imaginary (Right-column) parts of the susceptibilities for
probe and signal fields, depicted in blue- and red-curves, respectively. The relative phase
difference φr is: (a-b) π/2, (c-d) π , (e-f) 3π/2, and (g-h) 2π . One can see that χp satisfies
the PT -symmetric condition when φr = π/2, 3π/2; and satisfies the PT -antisymmetric
condition when φr = π,2π . However, χs only gives the PT -antisymmetric condition. Here,
the parameters used are |Ωc| = |Ωd | = 20Γ, Ωp = 0.01Γ, and Ωs = 1Γ, respectively.

the interaction channels, the relative phase in the form: φr = φp +φd−φs−φc, plays a crucial
parameter in our system [30].

For the signal field, we can apply the same analysis to have its susceptibility by calculating
the density element ρ41. The corresponding susceptibility for signal field can be found as χs =(
n℘2

41
/

ε0h̄Ωs
)

ρ41, or explicitly in the form:

χs = χs0

[
i
(
4γ̃21γ̃31Ωs+ |Ωc|2Ωs−ΩdΩ

∗
cΩp

)
4γ̃21γ̃31γ̃41+ γ̃41|Ωc|2+ γ̃31|Ωd |2

]
. (6)

Here, we have defined χs0 =
(
α
/

8
)(

λs
/

L
)(
Γ
/
Ωs
)
, with the wavelength of signal field λs.

3. PT -symmetry and PT -antisymmetry in the longitudinal direction

With Eqs. (5)-(6), one can see that, in terms of the frequency detuning of signal field, ∆s, the
corresponding susceptibilities for probe and signal fields are manifested with respect to frequency
detuning, but not to spatial coordinate. As a simple way to realize optical PT -symmetric
condition, we propose to apply a magnetic field B

(
z
)

along the propagation direction, z, see
Fig. 2. If this magnetic field has a linearly increasing function along the z-direction, the induced
Zeeman effect will also be position dependent. Then, as the Zeeman effect splits the energy level,
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we can map the detuning information ∆s to the longitudinal position, i.e.,

∆s
(
z
)
= ∆s

(
0
)
−gLm jµBB

(
z
)/

h̄. (7)

Here, µB = eh̄/2me = 9.27× 10−24 (in the unit of Joule/Tesla) is Bohr magneton, and gL =

1+
[
J
(
J+1

)
+S
(
S+1

)
−L

(
L+1

)]/
2J
(
J+1

)
is the Landé g-factor, with S, L, and J = L+S

denoting the spin, orbital, and total angular momentums, respectively. Moreover, we have
assumed that B

(
z = 0

)
= 0 and B

(
z > 0

)
> 0.

Now, as the detuning ∆s becomes a linear function along the z-direction, depending on the sign
of the quantum number m j, the corresponding ∆s

(
0
)

can be positive or negative. By adjusting
B
(
z
)

and ∆s
(
0
)
, we can implement the symmetry condition of ∆s

(
L
)
=−∆s

(
0
)
, with magnetic

field in the form:

B
(
z
)
=

[
2h̄∆s

(
0
)

gLm jµBL

]
z. (8)

By taking Rubidium atoms 87Rb as our atomic ensemble, from Eq. (8), one can estimate the
gradient of a magnetic field along z-direction as 4.27 (Tesla/m), for |∆s

(
0
)
| = 10Γ, Γ = 2π×6

MHz, gL = 4/3 , m j = 3/2 , and L' 1 mm.
Based on this scheme, we can transfer the optical susceptibility from the (detuning) spectrum to

a position-dependent distribution. In particular, as shown in Fig. 3, we reveal the susceptibilities
of probe and signal fields, i.e., χp

(
z
)

and χs
(
z
)
, in Blue- and Red-curves, respectively, for

different relative phases φr = π/2, π , 3π/2, and 2π .
For probe field, χp

(
z
)

in Blue-curves, as one can see, when the relative phase is φr =(
2n+1

)
π/2, n ∈ integers, as shown in Figs. 3(a)-3(b) and 3(e)-3(f), the real part of probe

susceptibility is an even function; while the imaginary part is an odd function with respect to the
center of length. This is the optical PT -symmetric condition. Moreover, one can see from the
real part of susceptibility in Figs. 3(a) and 3(c), we have a negative refractive index for the probe
field when φr = π/2, along with a dip in the central position; while a positive refractive index
happens when φr = 3π/2, along with a peak in the central position.

Nevertheless, when the relative phase is φr = nπ , with n ∈ integers, as shown in Figs. 3(c)-3(d)
and 3(g)-3(h), the real and imaginary parts of χp become odd and even functions, respectively.
Now, we have the PT -antisymmetric susceptibility. Moreover, the imaginary part of sus-
ceptibility shows that we have a gain peak for φr = π , but a absorption dip for φr = 2π . Most
importantly, only a change in the relative phase can give us such an all-optical-control to switch
from a PT -symmetry to PT -antisymmetry or vice versa.

In addition to the probe field, the susceptibility for signal field is also depicted in Fig. 3, but in
Red-color. Nevertheless, no matter what the relative phase is, we always have an odd function
in the real part of susceptibility for signal field, and an even function in its imaginary part of
susceptibility. Here, for signal field, we have the PT -antisymmetric susceptibility. Moreover,
the imaginary part of susceptibility gives a gain peak at the central position. Simultaneously,
when φr =

(
2n+1

)
π/2, n ∈ integers, we can realize PT -symmetric and PT -antisymmetric

conditions in the susceptibilities of probe and signal fields, respectively. When φ = nπ , both the
susceptibilities of probe and signal fields satisfy the PT -antisymmetric condition at the same
time.

To check the symmetry on the probe susceptibility, we calculate the deviation in the suscepti-
bility by calculating

[
ξ
(
z
)
−ξ

(
L− z

)]/
Θ− for an even function and

[
ξ
(
z
)
+ξ
(
L− z

)]/
Θ+

for an odd function, respectively. Here, ξ can be the real or imaginary part of the susceptibility
in the probe or signal field, i.e., Re

(
χp
)
, Im

(
χp
)
, Re

(
χs
)
, or Im

(
χs
)
. A normalized factor

Θ± is also introduced, which is defined by the maximal value of |ξ |. As an illustration, we fix
Ωp = 0.01 in Fig. 4 for the condition of a small probe intensity. One can see that only a negligible
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Fig. 4. The deviation of symmetry on the probe susceptibility. For an even function, we calcu-
late ξ

(
z
)
−ξ

(
L− z

)/
Θ−; while for an odd function, we calculate

[
ξ
(
z
)
+ξ
(
L− z

)]/
Θ+.

Here, ξ can be the real (in blue-color) or imaginary (in red-color) part of the susceptibility
in the probe field, and Θ± is the normalized factor. All the parameters used are the same as
those shown in Fig. 3, but the relative phases are choose for (a): φr =

(
2n
)
×π/2; and (b):

φr =
(
2n+1

)
×π/2.

deviation, i.e., less than 5%, is found in Fig. 4(a) for the relative phase φr =
(
2n
)
×π/2 and in

Fig. 4(b) for the relative phase φr =
(
2n+1

)
×π/2. These results reveal that the symmetry in

our probe susceptibility is almost perfect along the longitudinal direction.

4. Discussions

In order to illustrate the physical picture behind the results of these PT -symmetry and PT -
antisymmetry, we can further simplify the susceptibility for probe and signal fields given in
Eqs. (5)-(6). First of all, let us consider the condition with the relative phase φr = π/2 and
|Ωc| = |Ωd | �Ωp,Ωs. Then, the corresponding susceptibility of probe field can be approximated
as:

Reχp '−χp0

(
∆sΩp+2γ31Ωs

∆2
s +4γ2

31

)
, (9)

Imχp ' χp0

(
2γ31Ωp−∆sΩs

∆2
s +4γ2

31

)
. (10)

From Eqs. (9)-(10), one can see that the real part of probe susceptibility is almost an even
function with respect to the frequency detuning ∆s when Ωs

/
Ωp� |∆s|

/
2γ31. At the same time,

the imaginary part of χp becomes an odd function. Then, the linear transformation between
the detuning ∆s and propagation distance z maps these even/odd functions into the longitudinal
position.

Instead, when the relative phase is set as φr = 3π2, the corresponding probe susceptibility χp
becomes

Reχp '−χp0

(
∆sΩp−2γ31Ωs

∆2
s +4γ2

31

)
, (11)

Imχp ' χp0

(
2γ31Ωp+∆sΩs

∆2
s +4γ2

31

)
. (12)

By comparing Eqs. (9)-(10) and Eqs. (11)-(12), the change of the sign in front of 2γ31 of
the numerator gives us an odd function for the real part of probe susceptibility; along with an
even function for the imaginary part. According to the discussions above, now we have the
PT -symmetric condition.
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Next, when the relative phase is φr = π or φr = 2π , the probe susceptibility can be approximated
as:

Reχp '−χp0

(
∆s
(
Ωp±Ωs

)
∆2

s +4γ2
31

)
, (13)

Imχp ' χp0

(
2γ31

(
Ωp±Ωs

)
∆2

s +4γ2
31

)
. (14)

Here, the + sign applies for φr = π , while the − sign applies for φr = 2π , respectively. As one
can see, we have an odd function for real part of probe susceptibility, and an even function for
the imaginary part, resulting in the PT -antisymmetric condition.

As for the signal field, when the relative phase is φr = π/2 n ∈ integers, Eq. (6) can be
approximated as:

Reχs ' χs0

(
−∆sΩs±2γ31Ωp

∆2
s +4γ2

31

)
, (15)

Imχs ' χs0

(
2γ31Ωs±∆sΩp

∆2
s +4γ2

31

)
. (16)

Here, the sign, + or −, applies for even or odd number of n, respectively. Similarly, the signal
susceptibilities for the relative phases φr =

(
2n+1

)
× π, n ∈ integers and φr = 2n× π, n ∈

integers have the forms:

Reχs '−χs0

(
∆s
(
Ωs±Ωp

)
∆2

s +4γ2
31

)
, (17)

Imχs ' χs0

(
2γ31

(
Ωs±Ωp

)
∆2

s +4γ2
31

)
. (18)

Again, the sign, + or −, applies for even or odd number of n, respectively. Nevertheless, with
the comparison to the probe susceptibility, when Ωs

/
Ωp � 2γ31

/
|∆s|, the real part of signal

susceptibility is always an odd function, while the imaginary is an even one. It means that the
PT -antisymmetric condition for signal field is fulfilled.

Before the conclusion, let us remark the roles played by the probe and signal fields. In our
4-level double-Λ configuration, the role of Ωp and Ωs can be exchanged. Nevertheless, such an
even or odd function in the susceptibility comes from the detuning of signal field, ∆s. That is,
if we perform the detuning of probe field, ∆p, PT -symmetry can be manifested in the signal
field. Moreover, to simultaneously realize PT -symmetry and PT -antisymmetry for probe
and signal fields, their Rabi frequencies are either Ωp�Ωs or Ωp�Ωs. Nevertheless, by only
manipulating the relative phase, φr, one can also change the energy flow between probe and
signal fields.

To illustrate the propagation effect on the optical susceptibilities under PT -symmetric and
PT -antisymmetric conditions, we apply the Maxwell-Schrodinger equations for probe Ωp and
signal Ωs, i.e.,

∂Ωp

∂ z
= i

γ31α

2
ρ31, (19)

∂Ωs

∂ z
= i

γ41α

2
ρ41. (20)

By solving Eqs. (2)-(4) as well as Eqs. (19)-(20) numerically and taking the spatial dependent
detuning given in Eq. (7), we can obtain the field propagation behaviors.
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Fig. 5. Probe and signal field intensity verse the propagation distance with different phases:
(a,b) φr = π/2, (c,d) φr = 2×π/2, (e,f) φr = 3×π/2, and (g,h) φr = 4×π/2

In Fig. 5, we reveal the relationships between probe and signal field intensities and propagation
distances under different phases φr. For the probe field with the PT -symmetry, as shown in
Fig. 5(a), it suffers loss in the first half part of medium, and then gets gain in the rest part. It can
be understood by Fig. 3(b), in which the imaginary part of probe field susceptibility is positive
(loss) from 0 < z < L/2 , and negative (gain) when L/2 < z < L. Similarly, when φr = 3π/2
, Fig. 5(e) shows that the probe field gets gain first and loss afterward. On the other hand,
the signal field has PT -antisymmetry condition, which means that it does not have gain and
loss simultaneously in the longitudinal direction. As a result, the signal field intensity always
decays because the corresponding imaginary part of susceptibilities is always positive. The field
intensity propagation also gives agreement to the field susceptibilities shown in Fig. 3.

5. Conclusion

In this work, through the interaction with an ensemble of 4-level atoms in a double-Λ configura-
tion, we reveal a scheme to simultaneously realize PT -symmetric and PT -antisymmetric
conditions. It is the linearly increasing magnetic field that maps the spectrum information into
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the longitudinal direction of wave propagation. Compared to previous proposals [8], in which
different parameter conditions are needed for achieving PT -symmetry and PT -antisymmetry,
our system provides a simple and all-optical-controllable way to realize PT -symmetry and
PT -antisymmetry, as well as the switching process between them. With these phase-dependent
susceptibilities, such a double-Λ system can provide a platform to study the field dynamics in
PT -symmetry and PT -antisymmetry conditions.
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