
Soliton self-routing in a finite photonic potential
Alessandro Alberucci,1,* Chandroth P. Jisha,2,3 Ray-Kuang Lee,3 and Gaetano Assanto1

1Nonlinear Optics and OptoElectronics Lab (NooEL), Via della Vasca Navale 84, Rome 00146, Italy
2Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre 687, Porto 4169-007, Portugal

3Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan
*Corresponding author: alessandro.alberucci@uniroma3.it

Received January 16, 2013; revised April 26, 2013; accepted May 8, 2013;
posted May 8, 2013 (Doc. ID 183588); published June 7, 2013

We investigate power-dependent routing of one-dimensional Kerr-like spatial solitons in the presence of a
finite photonic potential. Large self-deflections can be obtained using a trapping index well of limited
length. © 2013 Optical Society of America
OCIS codes: (190.0190) Nonlinear optics; (190.6135) Spatial solitons; (260.5950) Self-focusing; (260.2710)

Inhomogeneous optical media.
http://dx.doi.org/10.1364/OL.38.002071

Optical spatial solitons (OSS) are nonlinear wavepackets
that preserve their profile and intensity distribution in
propagation: the natural spreading of a light beam due
to diffraction is compensated by self-focusing, the latter
modeled in Kerr-like media as a dependence of the re-
fractive index n on the beam intensity I, encompassing
both local and nonlocal response [1–3]. OSS can also con-
fine other (weaker) signals, thus defining light-induced
waveguides and readdressable interconnects whereby
the signal propagation path and output location are
controlled by the soliton trajectory. To this extent,
electro-optic and thermo-optic effect, light-induced
perturbations, interfaces and boundaries, parametric as
well as collisional interactions have been investigated
[3–10], including self-deflection [11–15]. The interaction
of OSS and dielectric inhomogeneities, including guiding
potentials where solitons tend to oscillate/breathe [16],
has been the subject of numerous theoretical analyses,
including perturbation theory applied to inverse scatter-
ing and equivalent particle or modulation theory [17–24].
Soliton propagation in refractive potentials has recently
led to the experimental observation of beam self-steering
due to tunnelling [25] or escaping [26].
In this Letter, we investigate the dynamics of spatial

solitons launched in a Kerr-like dielectric with a linear
refractive potential, which is finite in both longitudinal
and transverse dimensions, addressing their power-
dependent routing. To this extent we introduce an effec-
tive energy accounting for the soliton characteristics,
using the Ehrenfest theorem to model self-steering of
paraxial OSS over a wide range of deflection angles at
the exit of the index perturbation.
For the sake of clarity and simplicity hereby we focus

on the paraxial propagation of �1� 1�D light beams using
the generalized nonlinear Schrödinger equation (NLSE)
which, in the limit of small perturbations (of both linear
and nonlinear origins), reads [2,27]

i
∂u
∂Z

� 1
2
∂2u
∂X2 − F�juj2�u − pV eff�X; Z�u � 0; (1)

with n0 the unperturbed (background) refractive index.
The function F describes the (arbitrary) nonlinear
response. An index inhomogeneity acts through the

effective potential Veff�X; Z� � −2n0nL�X; Z�, with
nL�X; Z� the linear refractive index distribution. wp is
the characteristic width (i.e., along X) of the defect in
transverse space. The spatial coordinates are normalized
as Z � z∕Ld and X � x∕wp, with Ld � k0w2

pn0 (k0 is the
vacuum wavenumber); we set p � k20w

2
p∕2.

Let us consider a self-focusing response and a function
F , which does not depend explicitly on X and Z, i.e., a
homogeneous nonlinearity. Hereafter, we will assume
that a fundamental bright soliton is launched at the input
Z � 0 and study its trajectory hXi�Z� � R

φXdX , with
φ � juj2∕ R juj2dX the normalized wave function.
Taking—without loss of generality—p � 1, the evolution
of hXi along Z is ruled by the Ehrenfest’s theorem [27]
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with U � Veff � F�juj2� the overall potential and μm �R �X − hXi�mφdX the centered momentum of order m;
we note that μ1 � 0 always holds. We limit our analysis
to input powers such that the solitons retain their par-
ticle-like character [27], i.e., their width is small as com-
pared withwp. In this regime, if in Eq. (2) we retain terms
up to m � 2, the approximation is expected to be good.
Moreover, the solitons conserve their (even) parity with
respect to hXi: Eq. (2) shows that the mean force attrib-
utable to F�ju2j� is zero. Multiplying both sides of Eq. (2)
by the beam velocity v � dhXi∕dZ and integrating be-
tween Z � 0 and Z yields the conservation rule for the
equivalent energy E, the latter given by

E � 1
2
v2 � Veff�hXi� �

μ2
2
∂2Veff

∂X2

����
hXi

; (3)

where we neglected changes of OSS waist
�����
μ2

p
along

Z. In Eq. (3) the terms �1∕2�v2 and V tot � Veff � �μ2∕2�
�∂2Veff∕∂X2� represent an equivalent kinetic energy
and an equivalent potential, respectively. Equation (3)
states that the soliton motion obeys the classical law
for point-like particles with the degree of freedom hXi
and the control parameter

�����
μ2

p
. The dependence on μ2
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stems from the wave-like nature of OSS [17,27]. In turn,
OSS are characterized by a width versus power existence
curve, its specific form depending on F�juj2�. This im-
plies that, when propagating through an inhomogeneous
medium, OSS move along power-dependent trajectories
owing to differential overlaps with the linear potential.
In order to quantify the soliton dynamics in a specific

case, we choose a linear index well of profile nL �
Δ exp�−X2l�rectd�Z − Z0 − d∕2�, with l � 2 throughout
this work. Figure 1(a) plots V tot: for small μ2 it is
V tot ≈ Veff , whereas for increasing soliton waist the flat
zone close to X � 0 shrinks, with the formation of lateral
peaks for larger μ2. We now examine the role of V tot on
the soliton transverse motion, considering input beams
launched along Z, i.e., with v � 0 at Z � 0. The bell-
shaped V tot acts as an harmonic oscillator potential, with
oscillation period Λ � 2

���
2

p R X in
0 �E�X in� − V tot�x��−1∕2dx

[X in � hXi�Z � 0�], thus depending on μ2 and, via the
existence relation, on soliton power. Figure 1(b) illus-
trates dependence of Λ on both the launch point X in
and the soliton width

�����
μ2

p
. Finally, the soliton trajectories

computed from Eq. (2) for d → ∞ (only terms up to m �
2 were included) are graphed in Fig. 1(c): noticeably, the
oscillations change from sinusoidal to nearly square, due
to the strong an harmonicity of the potential V tot. Thus,
an efficient power-controlled soliton self-steering can be
easily obtained for a finite d, as the output velocity vout �
v�Z � Z0 � d� depends on power according to

vout � �
���������������������������������������������������
2�Vout�X in� − V tot�Xout��

p
; (4)

where Xout � hXi�Z � Z0 � d� is the soliton position at
the exit of the linear perturbation nL.
Although up to now all the results were independent

from the specific form of F�juj2�, the specific nonlinear
response comes into play when assessing the validity
range of our approach. For the sake of discussion, we
focus hereafter on the simplest case of a local Kerr non-
linearity F � juj2 and a fundamental bright soliton
u�X� � u0 sech�u0X� [2]. Figure 1(b) graphs the oscilla-
tion period Λ computed from Eq. (1) with the aid of the
beam-propagation method, taking a soliton input profile
and varying its width

�����
μ2

p
(given by 0.907∕u0 for

sech-like beams) and input position X in; Fig. 2 shows a
selection of the corresponding intensity profiles on the
plane XZ. For small widths, the numerical results nearly
coincide with the theoretical predictions of Eq. (3): the
nonlinear response dominates, with negligible changes
in soliton size versus propagation. For

�����
μ2

p
> 0.1, the

transverse size of the intensity distribution becomes
comparable with the size wp of the linear potential Veff :
an appreciable amount of power couples to radiation
modes of the linear guide, causing a discrepancy be-
tween theory and numerics. Moreover, the coherent in-
teraction of radiated and self-confined waves yields a
complex aperiodic behavior right after the input section,
although periodic oscillations are restored for large Z.
For

�����
μ2

p
> 0.5, the period Λ tends to the same value for

every X in: in this limit the soliton feels a mean potential
stemming from the average of Veff across its own profile,
disregarding the local details of the mutual overlap ver-
sus propagation coordinate.

Equation (4) clearly states that the soliton exit angle
depends on the longitudinal extent of the index perturba-
tion. To focus on power control, hereby we set d � 10.
The evolution of beams with various amplitudes propa-
gating through an index perturbation with Z0 � 2 are dis-
played as an overlay in Fig. 3, the coarser the contour
plot the higher the input power. The exit angles of the
OSS from the linear well span both upper and lower
halves of the output plane as input power varies, while

Fig. 1. (a) Overall potential V tot versus X for
�����
μ2

p � 0.001, 0.3,
and 0.4, larger μ2 correspond to a narrower lobe around the
center X � 0. (b) Oscillation period versus soliton width

�����
μ2

p
computed from Eq. (2) (solid lines) and from Eq. (1) (symbols);
the numbers next to each line indicate the corresponding initial
position X in. (c) Soliton trajectories in an infinitely extended
potential (d → ∞), and for X in � 0.5, 1, and 1.5, from top to bot-
tom, respectively; solid and dashed lines correspond to

�����
μ2

p �
0.001 and 0.2, respectively. Here Δ � 1.

Fig. 2. Soliton oscillations in a trapping well infinitely
extended across Z, versus input radius 1∕u0 and initial position
X in, computed via BPM code solving Eq. (1). Here Δ � 1.

Fig. 3. Left: beam evolution for input amplitudes ranging from
u0 � 2 to u0 � 12; d � 10 and the input position is X in � 0.5
(the dashed rectangle indicates the linear index well). Right:
corresponding output profiles normalized to their peak value
from u0 � 8 to u0 � 2, from left to right, respectively. Here
we set Δ � 1.

2072 OPTICS LETTERS / Vol. 38, No. 12 / June 15, 2013



the self-trapped nature of the beams is preserved.
Figure 4 shows the exit angle versus soliton width�����
μ2

p
for three input positions X in, as obtained from

numerical simulations of (1) and theoretical prediction
from (2). The agreement is similar to the case of the
oscillation period Λ plotted in Fig. 1.
Figure 4 demonstrates also the operation of an

all-optical router where the location of the signal output
is determined by either power or position (or both) of
the injected soliton. For the range of initial waists
considered in the figure, nearly all the launched power
transfers to the output soliton, with a maximum coupling
loss of about 2%. Noteworthy, in physical units the deflec-
tion angle is given by arctan�vout∕�k0n0wp��. If we take
n0 ≈ 1.4 and reminding p � 1, vout ≈ 1 corresponds to
an actual deflection angle of ≈26°; we stress that for
deflection angle larger than 30° nonparaxial effects
need to be accounted for. Finally, the use of nonlinearity
in soft matter, e.g., a nonlocal reorientational response,
would permit sub-mW excitation of spatial solitons in
two transverse dimensions and ensure their stability
and self-confinement over a broad range of launch
conditions [3].
In conclusion, we investigated the propagation of OSS

in linear potentials of finite extent. We introduced an
equivalent energy to describe the soliton motion, ac-
counting for the beam overlap with the linear index dis-
tribution. Our model describes well the dependence of
the soliton trajectory on excitation. For finite-length trap-
ping potentials it is possible to control the soliton emis-
sion over a broad angular range, thus realizing a novel
and effective power-driven signal router.

JCP and AA acknowledge grant support from the
FCT SFRH/BPD/77524/2011 and from Regione Lazio,
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Fig. 4. Theoretical (solid lines) and numerical (points) predic-
tions for the soliton output velocity vout versus input width

�����
μ2

p
,

for various input positions X in (labels next to each line). Here
d � 10 and Δ � 1.
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