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To explore resonance phenomena in the nonlinear region,
we show by experimental measurements and theoretical
analyses that resonance happens in modulation instability
from non-instantaneous nonlinearities in photorefractive
crystals. With a temporally periodic modulation in the
external bias voltage, corresponding to a modulation in
the nonlinear strength, an enhancement in the visibility
of MI at resonant frequency is reported through spontane-
ous optical pattern formations. Theoretical curves obtained
from a nonlinear non-instantaneous Schrödinger equation
give good agreement to experimental data. © 2018 Optical
Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.3270) Kerr effect;
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As a simple means to observe the manifestation of strongly non-
linear effects in nature, modulation instability (MI) has played
an important role in a variety of nonlinear systems [1–3]. Such
a symmetry-breaking phenomenon driven through the stochas-
tic fluctuations is closely related to the pattern formations in
optics, plasma physics, and hydrodynamics [4]. In optics,
MI causes chaotic, solitary, or turbulence waves, whereby a
small perturbation in the amplitude or phase in the input
wave grows exponentially [5,6]. Even though MI was reported
with biased photorefractive crystals two decades ago [7], until
recently, the existence of optical pattern transitions, as well
as their phase boundaries, in spontaneous optical pattern
formations are observed [8,9].

As the input noises are amplified and optimized, MI also
accounts for stochastic resonance [10–12], competition, and
correlation in confined patterns [13], degradation of beam
quality in high-power laser systems [14–16], and the emergence
of giant rogue wave/super-continuum generation [17–19]. In
addition to being an intrinsic property in nonlinear systems,
significant interest grows in the suppression or modification

of MI, such as by means of partial coherent light [20–22], non-
local nonlinear media [23], periodically tapered photonic crys-
tal fibers [24], or the intensity ratio between background to
signal fields [25].

In this Letter, by experimental measurements and theoreti-
cal analyses, we demonstrate a directly temporal modulation in
nonlinearities through a periodic change in the external bias
voltage. When driven by an external force or by varying some
parameters of the system, a universal phenomenon, resonance,
may happen with greater amplitude in the output at some
frequency. Unlike previous work that only introduced linear
periodic driving forces, we report nonlinear resonance by pre-
dicting and observing MI with a greater visibility at specific
frequencies. With spontaneous optical pattern formations of
MI in photorefractive crystals, enhancement in the visibility
is achieved due to the spatial-temporal response in non-
instantaneous nonlinearities [26,27].

The schematic diagram for our experiment setup is shown in
Fig. 1, where a Nd:YVO4 diode-pumped, continuous-wave,

Fig. 1. Schematic diagram for our experimental setup, where a laser
light source at the wavelength λ � 532 nm is incident onto a photo-
refractive crystal, SBN:60. An external bias voltage E(t) is applied
to the crystal, with a periodically temporal modulation in a square
wave function.
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solid-state laser at the center wavelength λ � 532 nm is used as
the input light. Then, we use two plano-convex lenses L1 and
L2 for beam collimation. The signal beam (o-wave) and back-
ground beam (e-wave), maintaining at a constant ratio 4∶1, are
controlled by half-wave plate (HWP) and polarization beam
splitter (PBS). The nonlinearity in our system is provided
by a photorefractive crystal, i.e., a strontium-barium niobate
(SBN:60) crystal, which has 5 × 5 × 5 mm3 in size, along with
an effective electro-optical coefficient r33 � 350 pm∕V. In the
output plane, the image of the signal beam is collected by a
charge-coupled device (CCD) camera. Contrast to our previous
work [8,9,25–27], here, we apply a square wave function on
the voltage, in order to give a periodic change in the nonlinear
strength.

For fields propagating in a SBN crystal [28–30], we can apply
the nonlinear Schrödinger equation with a non-instantaneous
nonlinear response characterized by a time constant τ in the
photorefractive system, i.e.,
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Here the spatial coordinates are normalized to 1∕k0 with k0 �
2π∕λ being the wavenumber of incident field, and A is normal-
ized to

ffiffiffiffi
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given that I s being the saturation intensity (as the

background beam). The nonlinear response function is given as
F �jAj2� � 1∕�1� jAj2�; while the nonlinear strength γ�t� ∝
r33E�t� ≡ γ0E�t� is assumed linearly proportional to the bias
voltage E�t�, but with a periodic change in time.

In Fig. 2, we demonstrate series of optical patterns recorded
by the CCD camera at the output plane when the bias voltage is
modulated by a square wave function with DC term E0, modu-
lation depth E1, modulation frequency ω � 2πf , and period
T � 2π∕ω. When biased at E0 � 0.3 kV, our photorefractive
crystal is operated above the threshold voltage for MI pattern to
emerge [25]. After reaching a steady output in the spontaneous
pattern formation, as shown in the far left panel of each row in
Fig. 2, we set the time as t � 0 and start to modulate the ex-
ternal bias voltage with a square wave function. Here we fix the
modulation depth E1 � 0.05 kV, but vary the time period in
the applied square wave function, i.e., T � 600, 360, and 20 s,
as shown in the left, middle, and right columns of Fig. 2.
Moreover, as the nonlinearity in photorefractive crystal is re-
laxed with a time constant of non-instantaneous response [31],
we also apply three different signal intensities in the inputs,
i.e., Is � 128, 28, and 7 mW∕cm2 from top to bottom rows,
in order to illustrate nearly instantaneous, intermediate, and
non-instantaneous nonlinear responses, respectively.

For quantitative analyses, here each MI pattern is character-
ized by its visibility in the optical image, defined as
V ≡ �Imax − Imin�∕�Imax � Imin� with Imax and Imin referring

Fig. 2. Visibility of MI and the corresponding optical intensity patterns collected at the output plane through a non-instantaneous photorefractive
crystal. Here we apply a bias voltage modulated in a square wave function (E0 � 0.3 kV and E1 � 0.05 kV), but with different periods, i.e.,
T � 600, 360, and 20 s for the left, middle, and right columns. Three different signal intensities (with the initial MI patterns at t � 0 shown
in the far left panel accordingly) are used, i.e., Is � 128, 28, and 7 mW∕cm2 from the top to bottom rows, which give instantaneous, intermediate,
and non-instantaneous nonlinear responses, respectively. In each panel, the visibility of the MI pattern is recorded as a function of time, while two
images shown in false colors are collected at the maximum (upper) and minimum (lower) biased voltages E�t� � E0 � E1.
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to the maximum and minimum values obtained from the
CCD. With a long period in the modulation, such as T �
600 s shown in Fig. 2(a), one can see that the visibility in
the corresponding MI patterns vary in a periodic way with
the same oscillation frequency as that in the applied biased volt-
age. Two typical images collected at the maximum and mini-
mum biased voltages E � 0.3� 0.05 are revealed accordingly.
Experimentally, such a periodic oscillation in the MI pattern
can be observed even for a very long time (more than 1 h).

Then we increase the modulation frequency ω in the
applied bias voltage or, equivalently, reduce the period T.
When the period is reduced to T � 360 s, as shown in
Fig. 2(b), one can also see a periodic change in the visibility
of MI patterns, which sustains up to 60 min, too. Two curves
in the red color describing the envelop in the recording curve
of visibility are depicted to indicate the supported range in
visibility. We refer to the difference in the visibilities or,
equivalently, the distance between these two red curves as
the band for visibility, denoted as Δ in the following.

Compared to the scenario with a longer period shown in
Fig. 2(a), the supported band for visibility also decreases.
Moreover, with a very short period in the change of biased volt-
age, it is difficult to see the change in the resulting visibility of
MI, as shown in Fig. 2(c) with T � 20 s. With the images
shown in Figs. 2(a)–2(c), naively, we can say that the visibility
of MI patterns follows the change in the applied biased voltage
when the modulation frequency is small. However, when the
speed of change in the external modulation voltages is too high,
the nonlinear response in our photorefractive crystal cannot
follow, resulting in the output visibility maintaining at a con-
stant value.

When the input signal intensity is reduced to
Is � 28 mW∕cm2, similar scenarios can be seen in the middle
row of Fig. 2. However, as one can see in Figs. 2(d)–2(f ),
now we have a longer relaxation time due to a weaker input
signal, which causes a delayed response in the visibility of
the MI pattern, resulting in a damped oscillation. Such a
damped oscillation may come from the relaxation of quasi-
static electric fields in photorefractive crystals [32,33].
Moreover, the supported band for visibility in MI patterns
Δ shrinks when the modulation period is reduced from
T � 600, 360, to 20 s.

When one further decreases the signal intensity to
7 mW∕cm2, as shown in the third row of Fig. 2, the relaxation
time constant in the nonlinear response becomes significantly
long enough. Now our photorefractive crystal gives a non-
instantaneous nonlinear response. Again, a damped oscillation
can be observed in the visibility of the MI pattern; see
Figs. 2(g)–2(i). When the modulation period decreases, in
contrast to the reduction in the supported band in visibility,
a great enlargement in MI visibility can be clearly seen when
we move the modulation period from T � 600 to 360 s as
shown in Figs. 2(g) and 2(h). Then, when the modulation

period goes smaller, the supported band in visibility becomes
a narrow one.

To explain these experimental images of spontaneous
optical pattern formations, we illustrate the underlying picture
by finding the corresponding resonant frequencies when one
modulates the nonlinear strength periodically. Without loss
of generality, we assume that a sinusoidal wave function is
applied to the bias voltage E�t� given in Eq. (1),
i.e., E�t� � E0 � E1 sin�ωt�.

The corresponding MI spectrum for the unstable perturbed
field on top of a plane wave solution can be found by applying
A � �A0 � a�x, z, t�� exp�−iβz� into Eq. (1), with an assigned
propagation constant β. By casting the perturbed field in the
form of a � �a0 exp�iΩt � ikx − ihz� � c:c:�, with the tempo-
ral modulation frequency Ω and spatial wavenumber k, respec-
tively, one can determine an unstable perturbed field, as its
perturbed propagation constant is no longer a real number,
i.e., h � h1 � ih2. The growth rate of this unstable perturbed
field is referred to as h2, which has the form

h2�k, I ,Ωτ,ωτ, t� � �Re
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1� i�Ω − ω�τ

��s �
:

When the modulation frequency ω � 0, the growth rate is
reduced to the spatial-temporal MI of coherent light in non-
instantaneous nonlinear media [26], whereby the correspond-
ing growth rate spectrum becomes a flat one at higher
frequencies.

However, with a time-dependent modulation in the nonlin-
ear strength, ω ≠ 0, the corresponding growth rate varies
accordingly with the same frequency. In Fig. 3, we reveal the
MI spectrum, in terms of the MI growth rate h2 as a function of
the spatial wavenumber k, for both instantaneous and non-
instantaneous nonlinearities, but with an external modulation
in the nonlinear strength. Let us consider the case with instan-
taneous nonlinearity first, i.e.,Ωτ ≪ 1. As depicted in Fig. 3(a)
for Ωτ � 0, instead of a fixed value (see the curve in the black
color for ωτ � 0), there exists a band for the MI growth rate h2
to vary when the nonlinear strength is modulated at ω. Such a
time-dependent growth rate can vary within a wider band re-
gion as the modulation frequency ω is small (but non-zero),
which indicates that a change in the nonlinearity provided

Fig. 3. MI spectrum for nonlinear systems with (a) instantaneous
(Ωτ � 0) and (b) non-instantaneous (Ωτ � 5) responses. Different
external modulation frequencies are depicted for ωτ � 0, 1, 5, and
10 in black, purple, blue, and green colors, respectively, along with
(in the same colors) ωt � n × 2π∕10 (n � 0, 1,…9).
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by photorefractive crystals just follows the change in bias volt-
age. Nevertheless, when the modulation frequency increases,
the size of the supported band for the growth rate shrinks,
as shown in Fig. 3(a) for ωτ � 1, 5, and 10 in purple, blue
and green colors, respectively, similar to the observation in
the experiment shown in the first row of Fig. 2. As the non-
linear response in photorefractive crystals comes from the
Pockel effect through the transport of carrier donors, when
ω ≫ Ω, a fast periodic modulation in the applied voltage
can only give an average value of the nonlinear strength,

i.e., h2�Ωτ� 0,ωτ→∞, t�≈�Re�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k4
4
� γ0k2jAj2

�1�jAj2�2 E0

q
�. This

means that we have a single value in the MI growth rate
supported by nothing but the DC term (ω � 0) when the
modulation frequency is high enough.

However, the scenario is totally different for a non-instanta-
neous nonlinear system, i.e., Ωτ ≠ 0. As shown in Fig. 3(b),
even though there exist several maximum values to support
MI (experimentally only the lower value survives due to the
spatial diffraction), the corresponding MI profile changes
with a non-zero external modulation frequency ωτ ≠ 0.
Nevertheless, resonance can happen when the external modu-
lation frequency approaches the temporal modulation fre-
quency in MI, i.e., ω → Ω. In particular, one can see clearly
that the corresponding gain profile changes within a very large
range, as shown in the blue color, when the external modula-
tion frequency is the same as that in the non-instantaneous
nonlinear response, i.e., ω � Ω.

With the theoretical growth rate, we plot the spectrum for
MI visibility by defining the difference in the visibilities Δ,
which corresponds to the band defined through two red
curves in Fig. 2. As a function of external modulation frequency
f (Hz), Fig. 4 reveals the resonance spectrum for MI.
For different input signal intensities, we also normalize the vis-
ibility difference to the same value at f � 0. One can see that
the spectrum shown in Fig. 4 is similar to a driven damped
simple harmonic oscillator. Nevertheless, here we disclose a res-
onance spectrum in the nonlinear system through MI visibility.
Longer and longer relaxation time constants are needed, i.e.,
Ωτ � 0.8, 2.2, and 4.9, in order to fit into the input signal
intensities for nearly instantaneous intermediate and non-
instantaneous nonlinear responses, respectively.

In conclusion, by operating the photorefractive crystals in
the non-instantaneous region, we report nonlinear resonance

in MI by experimental measurements and theoretical analyses
based on a nonlinear non-instantaneous Schrödinger equation.
With a periodic modulation in the external bias voltage, which
acts equivalently as a modulation in the nonlinear strength, a
resonance spectrum is disclosed with an enhancement in the
visibility of MI at resonant frequency. A nonlinear manifold
of a damped oscillator is demonstrated through spontaneous
optical pattern formations, which is believed to be manifested
also in other branches with nonlinear physics.
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