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1. Introduction

Optical transitions between electronic states within the conduc-
tion bands of semiconductor quantum-wells (QWSs) have proved to
be a promising candidate for the realization of optical devices and
optical information sciences [1]. Large number of efforts have been
devoted to the investigations of both linear and nonlinear optical
properties in semiconductor quantum-well structures.

It is well known that the third-order Kerr nonlinearity x
plays an important role in nonlinear optics with applications from
optical shutters [2-4] to the generation of optical solitons [5,6].
It is desirable to achieve giant Kerr nonlinearities with low light
powers [7,8]. In recent years, both theoretically [9-11] and exper-
imentally [12], the giant third-order nonlinear susceptibility with
reducing linear absorption has been one of the most extensively
studied phenomena. In addition, retaining the merits of the giant
Kerr nonlinearities, Wu and Deng [13-15] have theoretically pro-
posed that it is possible to form ultraslow optical bright and dark
solitons for a weak light by including the self-phase modulation in
cold atomic media.

* Corresponding author at: Department of Physics, Southeast University, Nanjing
210096, China. Tel.: +86 25 52090600 8301; fax: +86 25 52090600 8204.

E-mail address: wenxingyang@seu.edu.cn (W.-X. Yang).

0375-9601/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2009.11.002

However, it is more advantageous at least from the view point
of practical purposes to find possible solid-state media that could
permit to realize the giant Kerr nonlinearities with low pump
power, low absorptions, and shape-invariant propagation of the op-
tical field instead of the cold atom gases mentioned above. Due
to strong electron-electron interactions, the two-dimensional elec-
tron gas behaves effectively as a single oscillator, with atomiclike
intersubband transition (ISBT) responses [1]. Quantum interference
and coherence in QWSs can also produce some interesting phe-
nomena such as strong electromagnetically induced transparency
[16-18], coherent population trapping [19], lasing without inver-
sion [20], enhancement of refractive index [21], tunneling-induced
transparency [22], and so on [23-31]. More recently, the enhance-
ment of Kerr nonlinearities based on Fano-interference with in-
tersubband transitions [32,33] and a large cross-phase modulation
(XPM) have been studied in an asymmetric QWs [34].

In this Letter, we show that asymmetric semiconductor cou-
pled double quantum-well (CQW) can also support the propaga-
tion of optical solitons via a two-photon Raman resonance scheme.
Besides, under the two-photon resonance condition and with ap-
propriate one-photon detuning, we can obtain the cancellation of
linear absorption, enhancement of Kerr nonlinearities, and slow
group velocity propagation of the weak probe pulse simultane-
ously. Since the conduction subband energy level can be easily
tuned by an external bias voltage, the proposed CQW structure
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also provide another possibility to realize electrically controllable
phase modulator at low light levels [35].

2. Model and equations of motion

Let us consider an asymmetric semiconductor CQW structure
consisting of 10 pairs of a 51-monolayer (145 A) thick wide well
and a 35-monolayer (100 A) thick narrow well, separated by
an Alg;GaggAs buffer layer [35,36], as shown in Fig. 1. In this
quantum-well structure, the first (n = 1) electron levels in the wide
and narrow wells can be aligned with each other by applying a
static electric field, while the corresponding n =1 hole levels are
never aligned due to the polarization of input fields. The electrons
then delocalize over both wells while the holes remain localized.
For transitions from the narrow and wide wells, the Coulomb in-
teraction between the electron and hole down shifts the value of
the electric field, where the resonance condition is fulfilled to the
corresponding built-in field. Level |1) in the narrow well and level
|2) in the wide well are localized hole states. The energy differ-
ence 25 between the bonding state |3) and antibonding state |4) is
determined by the level splitting in the absence of tunneling and
related tunneling matrix elements, which can be controlled by an
electric field applied perpendicularly to CQW. For more details on
this structure we refer the reader to Ref. [36].

As shown in Fig. 1(b), all the lights propagate along the z axis
(parallel to the plane of the CQW) within our proposed struc-
ture, and we consider a transverse magnetically (TM) polarized
probe field incident with respect to the growth direction (y axis).
This configuration is preferred due to a relatively long propagation
distance, of the order of millimeters. We assume the transitions
|2) <> |4) and |2) <> |3) are simultaneously coupled by a control
laser field with the one-half Rabi frequencies 2. = u42E./2h and
(£2c/432)/ k42, Tespectively. At the same time, a weak probe laser
field is applied to the transitions |1) <> |4) with the corresponding
Rabi frequencies §2,. And the transitions |1) <> |3) is dipole forbid-
den. E; and E, are the amplitude of the control and weak probe
fields, respectively. The electric field of the system can be written
as E=¢epEpexp(—iwpt + ikp - T) + ecEc exp(—iwct + ike - T) + c.c.,
where €; and k ;j are related unit vector and wave vector for the
slowly varying envelope E j, respectively. In the present analysis we
assume that the semiconductor quantum-well are designed with
low dopings such that electron-electron effects have very small
influences in our results. Many-body effects (for example, the de-
polarization effect, which renormalizes the free-carrier and carrier-
field contributions) are not included in our study [37]. Working in
the interaction picture, utilizing the rotating-wave approximation
and the electric-dipole approximation, we derive the Hamiltonian
for our quantum-well structure as

H=—Apl4){4| = (Ap +8)I3) 3] = (Ap — A)|2)(2]
— (82c14) (2] + q$2¢13) (2| + £2,|4) (1] + H.c.), (1)

where 28 = E4 — E3 is the energy splitting between the upper
levels. Ac = wc — w4 and Ap = wp — w41 are detunings of the
coupling and probe fields with transitions |2) <> [4) and |1) <> |4),
respectively. £2, = w41E,/(2h) denotes one half Rabi frequency
for the transition |1) <> |4), the coefficient q = w42/1432 describes
the ratio of a pair of dipole moments with ;; being the dipole
moment for the corresponding transitions |i) <> |j). The system
dynamics can be described by the equations of motion for the
probability amplitudes of the electronic wave functions, i.e.,

d0Aq

— =27 Ay, 2
o » A4 (2)
dA ) . .

o =l =iy = A0]As + 127 As+ iq2! As, (3)

(b)
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Fig. 1. (Color online.) (a) Conduction subband energy level diagram for a single pe-
riod of the coupled double quantum-well structure consisting of a wide well (WW)
and a narrow well (NW). (b) Possible launching geometry. Lights are injected with
the wave vectors k (kp ) parallel to the plane of the CQW (z axis) and y direction
denotes the growth axis. The polarization state of the field (TM) is also indicated.
This configuration is preferred due to a relatively long propagation distance, one the
order of millimeters, in order to observe the soliton formation.

0A3 . .

= = 3 Ay = 9)]As +i42cAz + Kk Ag, (4)
0Ay . . .
T:_(V4_1Ap)A4+l-QpAl +i2cA2 + Kk A3, (5)
where A;j (j =1,2,3) being the amplitudes of subbands |j). The

total decay rates y; are given by y; = yy + yidph, where yidph is
the dephasing decay rates and can be determined by the intra-
subband phonon scattering, electron-electron scattering, and in-
homogeneous broadening due to the scattering on the interface
roughness. The population decay rates y;;, determined by longitu-
dinal optical (LO) phonon emission events at low temperature, can
also be calculated by solving the effective mass Schrodinger equa-

tion [38]. For the temperatures up to 10 K and a carrier density

smaller than 10'2 cm~2, the dephasing decay rates yidph can be
estimated according to Ref. [14]. k¥ = ,/y3[ya represents the cross-
coupling of states |3) and |4) via the LO phonon decay. Note that
a comprehensive treatment of the decay rates would involve in-
corporation of the decay mechanisms into the Hamiltonian of our
system. However, in this work we have adopted the phenomeno-
logical approach to treat the decay mechanisms, in order to illus-
trate the main physical picture here.

Under weak probe approximation ((|£2p| < [£2¢|)), almost all of
the population are assumed to remain in the ground state |1). Also,
we assume that the excited state |4) can be adiabatically elim-
inated when the variation of the probe field’s envelope is slow
compared to the decay of the excited states. There is no popu-
lation transfer of the ground state |1). With these assumptions,
it can be shown that |A{|~ 1, A%A = 0. With two-photon reso-
nance condition (Ap, = A = A), we obtain the solutions of A; to
the first-order of £2, from Egs. (2)-(5)

(b —qr)2;$2)p

(1)

Ay =— s 6
2 abc — a2 4 (b + cq? — 2qic) | 2|2 (©)
(1) i(ak +Q|-QC|Z)QP

AP = - , (7)

—abc + ak? — (b + cq? — 2qK)|2¢|?
i(ab + q%|82:1%) 2
A‘(:):— i(ab +q=|82¢1°)82p (8)

abc —ax? + (b + cq? — 2qK)| 2%’

with a = —y,, b= —[y3 —i(A + )], and ¢ = —(y4 — iA). The in-
duced polarization at the probe frequency is P(wp) = x (wp)Ep.
The susceptibility is written as x P (wp) +3x®|Ep|?, where we
just consider the susceptibility to the third-order and neglect
higher-order terms. The first-order x " (w,) and third-order x©®
susceptibility of the probe pulse are given by [13-15]

1 1
4 = _ Nl AA )
ﬁEo .Qp ’
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Fig. 2. Dependencies of Im[x (V] and Re[x "] in (a) and Im[x ®] and Re[x ®] in (b) versus the probe detuning A,. We have set N|u14[?/heo and N|u1a|*/3heg as units,
respectively. Other parameters used are F=1, y3 =4.2 ps~', y4=3.7 ps~!, y$ ~0, 6 =4 ps~!, Q. =2 ps~!, and g = 1.25.
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where N is the electron volume density. For the CQW structure

considered here, we take ), =0 by consulting Ref. [39]. Thus
Eq. (9) can be simplified as

(10)

L=  Njuia? iq?| 92|
heo  —(b+cq? —2qi)|82c|*

Based on Eq. (11), one can find that the first-order susceptibility
is mainly induced by the cross coupling from the driving field £2.
and via the LO phonon decay through states |3) and |4). In order to
examine the linear absorption and dispersion, we derive the imag-
inary and the real parts of the first-order susceptibility explicitly,

(11)

Im[x ] = _ Njual 20k + ¢’y +q'ys
heo  (8+A+q2A)2 + 2qk + v3 +q*ya)?’
(12)

Re[xm]: Nlp14l? P+ A +qA
heo  (8+ A+q>A)2 + 29k + y3 + q?ya)?’
(13)

Egs. (12) and (13) show that the absorption Im[x "] and disper-
sion Re[x V] of the probe field do not depend on the intensity of
the control field £2.. When A = —§/(1 + q?), there appears an ab-
sorption peak, and the corresponding dispersion is zero. In Fig. 2(a)
we show the imaginary and real parts of the linear susceptibil-
ity versus the single-photon detuning A. It is clearly seen that
far from the point A = —8/(1 + q?), the linear absorption will be
closed to zero.

3. Giant Kerr nonlinearities in quantum-well nanostructure

In Section 2, we have derived the third-order nonlinear sus-
ceptibility for our four-level system. Note that for the simplified
three-level A configuration (|1), |2), and |4)), the third-order non-
linear susceptibility is zero under the two-photon resonance con-
dition. But in this four-level two-photon resonance Raman sys-
tem (Ap = A¢), the coupling of the control field with transition
|2) <> |3) destroys the coherence between states |1) and |2), which
causes the linear absorption of the probe field and also leads to the
nonlinear effect. As a result, g # 0 indicates constructive interfer-
ence in the XPM nonlinearities.

We perform a numerical calculation of the third-order nonlin-
ear susceptibility in Eq. (10). As shown in Fig. 2, for a certain
detuning, for example, at the marker B in Fig. 2(b) (corresponds
to the marker A in Fig. 2(a) with the same frequency detuning),
linear absorption is vanished while the strength of XPM is large,

which suggests that a large XPM can be achieved as linear absorp-
tion vanishes simultaneously. This interesting result is produced
by the cross coupling in the nonlinear susceptibility associated
with XPM, which is the behavior of a quantum interference be-
tween the two different excitation channels: cross-coupling and
back-coupling channels. If the probe field is so strong that it can
couple the channels |1) <> |3) and |1) <> |4), in this case the
back-coupling channel |1) <> |4) will simultaneously give rise to
a destructive interference path way, resulting in the suppression
of XPM. In other words, this is a consequence of quantum coher-
ence by cross-coupling excitation of control field 2. under weak
probe approximation. In addition, one can readily checked that the
decay-induced interference, k, only has a small effect on the XPM
because here the XPM is mainly induced by the control field £2,
under the condition x <« §2.. The same concept we demonstrate
here can also be applied to a four-level atomic system. But unlike
the cold atomic systems with specific four-level atoms, the conduc-
tion subband energy varies with the bias voltage in QWs. When we
adjust the energy level of the bonding state |3) and the antibond-
ing state |4) at different bias voltages, different nonlinear phase
shifts can be obtained by such a giant Kerr nonlinearity. Thus our
proposed CQW structures could be provided as a flexible device to
realize voltage controllable, solid-based phase modulators at low
light powers.

4. Optical solitons in quantum-well nanostructure

If the losses of the probe pulse are small enough to be ne-
glected, the balance between the nonlinear self-phase modulation
and group velocity dispersion (GVD) may keep a pulse with shape-
invariant propagation. From above numerical discussions, as long
as probe detuning A, is far from the point corresponding to the
absorption peak, the linear absorption of the probe pulse is neg-
ligible and the nonlinear self-phase modulation is enhanced. The
evolution for the electric-field is governed by the Maxwell equa-
tion in one dimension,

5 13%E 1 8P
E —

_1oE_ 1 0P 14
c2 9t2  goc? ot? (14
with
P = N(ji14AsA% explitky - T — wpt)]
+ [i23A3A3 EXP[i(’zc T —wct)]
+ [l24AsAS exp[i(ﬁC T—wct)]+c.c), (15)

where N, ¢, and &g being the concentration, velocity of light in
vacuum, and vacuum dielectric constant, respectively. Under the
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slowly varying envelope approximation, Eq. (14) can be reduced to
describe the evolution for the probe field, i.e.,

082p(z,t)  1082p(z,t)
0z [« at

= iFA4A*, (16)

where F = N£2ple, - iL14]?/(280hc). For simplicity, we have as-
sumed Ep = Ezlzp. In order to provide a clear picture of the in-
terplay between the dispersion and nonlinear effects for the CQW
system interacting with two optical fields, we first investigate the
dispersion properties of the system. This requires a perturbation
treatment of the system response to the first-order of weak probe
field £2,, while keeping all orders due to the control field 2. Be-
low, we demonstrate that due to the balance between higher-order
terms and related dispersion effect one can have the formation of
slow optical solitons.

We assume that Aj = EkAﬁk), where Aj.’o is the k-th-order part
of Aj in terms of £,. Within an adiabatic framework it can be
shown that AE.O) =4jp and Agl) = 0. Taking the time Fourier trans-
form of Egs. (3)-(5) and keeping up to the first-order of £2,, we
have

@+ Ap— Ac+iy)ps" + 208 +q2:ps" =0, (17)
@+ Ay —8+iy) B +q2.8" + 1 =0, (18)
(Ap+iya)Bs + Ap + 23" + 1BV =0, (19)

where /3](]) and A, are the Fourier transforms of Ag.l) and £2;, re-
spectively. w is the Fourier-transform variable. The above equations
(17)-(19) can be solved analytically, yielding

Ap(z, w) = Ap(0, w) exp(iKz), (20)
where

o (@—A—=8—iy)(@+iy2) — q* 2|
K=—+F
c abc —ak? + (b + cq? — 2qK)| 2|2

w 2
=Ko+ — +Kaw” +---. (21)
Vg
The physical interpretation of Eq. (21) is rather clear. Ko =
¢ +ia/2 describes the phase shift ¢ per unit length and absorp-
tion coefficient « of the probe field, K1 =1/V gives the propaga-
tion velocity, and K, represents the group-velocity dispersion that
contributes to the probe field.

With the dispersion coefficients obtained in Eq. (21), we now
investigate the nonlinear evolution of the probe field. Following
the method in Refs. [13,14], we take a trial function £2,(z,t) =
£25(z,t) exp(iKoz) and substitute it into the wave equation to ob-
tain the following nonlinear wave equation for the slowly varying
envelope £2,(z, t), which is accurate up to the third-order, i.e.,

i 9 2, —K ”

9 P T a2
where £ =z, n =t —2z/Vg, the absorption coefficient o = 2Im(Kp),
the group velocity V and the dispersion coefficient K are deter-
mined by Eq. (21). The nonlinear coefficient W is explicitly given

by

2p=We (2,22, (22)

W = _ Fi@b + @12 - g2 — @k +412*)° - @b +¢*|2c*)’]
D|D|? ’
(23)

with D = abc — ak? + (b + cq® — 2qK)|82¢|%. If a reasonable and
realistic set of parameters can be found so that exp(—o«L) >~ 1
(L is the length of the CQW system), Ky = Ky + iK; >~ K3y, and

Fig. 3. (Color online.) Surface plot of the probe intensity |S2p/(2p0\2 exp(—a&) ver-
sus dimensionless time 7/7¢ and distance z/L obtained by solving Eq. (22) numeri-
cally without neglecting the imaginary part of coefficients with the initial condition
given in Eq. (26). Here L =1 mm, 7o = 1.6 x 1078 s, and other parameters are ex-
plained in the main text.

W = W, +iW; >~ W,, then Eq. (22) can be reduced to the stan-
dard nonlinear Schrédinger equation, i.e.,

9 9? 2
i— 82y — Kor—= 82, = W |2,|° 825, 24
dE p 2ran2 p rl$2p1°82p (24)
which admits solutions describing dark (KW, < 0) and bright
(KW > 0) solitons including N-soliton (N =1,2,3,...) for dark
and bright solitons [40]. Fundamental dark soliton with KW, <0
takes the form

2 = 2po tanh (/7o) exp(—iW;&[2p0/*). (25)

where the amplitude 2,0 and the width 7o are arbitrary con-
stants, subjected only to the constraint |52p0r|2 = —2Kp: /W
For KorW; > 0, one has fundamental bright soliton and bright
2-soliton (bright soliton of second-order) given by

1.
2 = 2posech(n/to) eXp(—EIWrSLQI,olZ), (26)

4[cosh(3n/70) + 3 exp(—8iKar& /1) cosh(n/T0)] exp(—iKar& /Td)
cosh(4n/7o) + 4 cosh(2n7/To) + 3 cos(8K2rE /T2)

$2p = 20
(27)

with the amplitude 2,0 and width 7o being arbitrary constants,
subjected only to the constraint |.(2p010|2 = —2Ky:/W;. We note
that the bright 2-soliton solution in Eq. (27) satisfies £2,(¢ =
0, ) = 282po sech(n/7o).

To check the validity of our assumptions that leads to Eqs. (24)-
(27), below we give a practical example for a realistic CQW sys-
tem, with F =1.6 mm 'ps—!, g=1.2, 2. =2 ps~!, decay rates
y3=4.2ps!, y4=3.7 ps~!, y, ~0, detuning A =3 ps~!, the en-
ergy splitting § =4 ps—', Ko =~ (—1.76 — 0.0451) x 10722 mm~ s,
and W ~ (—=1.23 4+ 0.032) x 1072° mm~1s2. Clearly, for all com-
plex coefficients the imaginary parts are indeed much smaller than
their corresponding real parts. Based on this parameters, we ob-
tain @ ~0.0031 mm~! and vg/c ~3.5 x 1072. Then the standard
nonlinear Schrodinger equation in Eq. (24) with Ky W, > 0 is well
characterized, and hence the existence of bright solitons that trav-
els with slow group velocity in the CQW structures is supported. In
Fig. 3, we show the result of numerical simulation on the soliton
wave shape versus dimensionless time 1/tp and distance &/L with
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4 ¢

Fig. 4. (Color online.) Surface plot of the solitary intensity \1'21,/.(2,,0|2 exp(—ag)
versus dimensionless time 7/7p and distance z/L obtained by directly simulating
Egs. (2)-(5), and Eq. (16) without using any approximation. The initial condition
and the parameters are the same as those in Fig. 3.

the full complex coefficients by taking Eq. (26) as an initial condi-
tion. One can find that in this case the soliton is fairly stable during
propagation, which is mainly produced from the balance between
dispersion and nonlinearity. Thus the result of numerical simula-
tion shows excellent agreement with the exact soliton solution in
Eq. (22). To make further confirmation on the optical soliton so-
lutions obtained above and check their stability, we also perform
additional numerical simulations starting directly from Egs. (2)-(5)
and (16) without using any approximation. Fig. 4 is the propa-
gation for the probe field, with Eq. (22) as the input condition.
One can find that, except for small ripples appearing on its peak
due to higher-order dispersions and higher-order nonlinear effects
that have not been included, the optical solitons produced here is
rather stable as expected.

It is worth noting that the cross coupling of control field may
be viewed as the perturbation to the two-photon resonance con-
dition, which comes from the closely separated two upper lev-
els instead of coming from the perturbation by introducing an-
other laser field or taking two-photon detuning [13-15], thus our
scheme is a very stable system to form slow optical solitons. There
are four adjustable parameters in our proposed system, i.e., the
intensity of the driving field, probe detuning A, the energy split-
ting 28 between the two upper levels, and the relative coupling
ratio q. The control field only need to be strong enough to cou-
ple two transitions |2) <> |4) and |2) <> |3). On the other hand,
relatively lower intensity of control field can lead to better ef-
fects in formation of slow optical solitons. In addition, we have
used assumption of |.Q,,0|2 & |92/ in our calculations, so that
the pulse width of the probe field 7o should be chosen to sat-
isfy |2p070|? = —Kar/W;r < |$2:70|?. Fig. 2 shows that there is a
very large range validity for the parameter Aj,. For the parame-
ters § and g, smaller separation § will be better, which is adjusted
and there is no strict requirement for q.

5. Conclusion

Before conclusion, we note that we have used the one-dimen-
sional model in analysis, and correspondingly, the momentum-
dependency of subband energies was ignored [41]. In fact, there
is no large discrepancy between the reduced one-dimensional cal-
culation and the full two-dimensional calculation, and the related
theoretical discussions can be found in Refs. [17,23].

In short, based on the two-photon Raman resonance scheme
in an asymmetric coupled double quantum-wells, we have shown
that the quantum interference caused by cross coupling of a con-
trol field not only suppresses linear absorption loss, but also en-
hances Kerr nonlinearities of the weak probe pulse. With the
unique feature of controllable balance between linear dispersion
and nonlinear effects in these solid-state devices, we also demon-
strate the possibility to form ultraslow optical solitons. Slow opti-
cal solitons discussed in the present work may lead to important
applications such as high fidelity optical delay lines and optical
buffers. Compared to conventional EIT scheme, the two-photon Ra-
man scheme in this work represents an alternative method, and
may lead to new phenomena that manifest themselves under well
controlled balance of dispersion and nonlinear effects.
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