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A general quantum theory of self-induced transparency (SIT) solitons is developed with nonlinear quantum
effects of atoms taken into account. The quantization starts from the coarse-grain-averaged light-atom inter-
action Hamiltonian by which the quantum effects of ensemble atoms are modeled. The calculation of quantum
properties is performed by the backpropagation method, which takes into account the contribution of the field
continuum parts and the atomic fluctuations. The detectable squeezing ratio with a general homodyne local
oscillator can be simulated for practical experimental realizations. Schemes for generating quantum correlation

through SIT soliton interaction are also proposed and analyzed.
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I. INTRODUCTION

In nonlinear optical physics, the self-induced transparency
(SIT) soliton phenomenon in two-level atomic systems is
one of the most well-known coherent pulse propagation phe-
nomena that have been intensively investigated [1,2]. For
possible applications of quantum communication and infor-
mation processing, different ways of manipulating the non-
classical states of photons with multilevel atomic ensembles
have attracted extensive research interests both in the fields
of quantum optics and quantum information science [3-7].
Optical solitons in glass fibers described by the nonlinear
Schrodinger equation (NLS) have also played an important
role for generating macroscopic nonclassical states exhibit-
ing quadrature squeezing [8-10], amplitude squeezing
[11,12], or intrapulse and/or interpulse quantum correlation
[13].

As a member of the optical soliton family, the SIT soli-
tons have also been suggested to be potentially capable of
playing an important role in pulsed squeezed state generation
[14,15], quantum nondemolition (QND) measurements [14],
and quantum information storage and retrieval [16]. In con-
trast to the electromagnetic-induced-transparency phenom-
ena that have been widely utilized for applications such as
slow lights and quantum memories [3,4], the SIT phenomena
are intrinsic nonlinear coherent pulse propagation effects that
may have more advantages for short optical pulse applica-
tions. With the recent advances of microstructured fiber tech-
nologies [17], several experiments of wavelength conversion
and resonant light-matter interaction by using photonic crys-
tal fibers filled with active atoms have been demonstrated
[18,19]. Tt has also been shown that the photonic crystal
fibers can help to reduce the dominant acoustic wave Bril-
louin scattering noises by tenfold [20]. The generation of
squeezing via SIT solitons inside hollow-core photonic crys-
tal fibers filled with active atom vapors is also likely to hap-
pen soon [21]. In view of these development trends, an us-
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able quantum theory for SIT solitons is urgently needed in
order to provide guidelines for experiments and to help pre-
dict new phenomena.

In the literature, a quantum theory of SIT solitons has
been developed previously by one of the authors based on
the linearization approach within the framework of the
inverse-scattering method [15]. Only the quantum noises for
the perturbed soliton parameters (i.e., photon number, phase,
frequency, and position) were calculated accurately, whereas
the contributions from the field continuum parts are totally
ignored by assuming that special homodyne local oscillators
are used to project out only the soliton parts. In the present
work, a more general quantum theory of SIT solitons is suc-
cessfully developed. The quantization starts from the coarse-
grain-averaged light-atom interaction Hamiltonian by which
the quantum effects of ensemble atoms are modeled rigor-
ously. The calculation of the quantum noise properties are
performed by the backpropagation method [22], which can
take into account the field continuum contributions and the
atomic fluctuations generally. The detectable squeezing ratio
with a general local oscillator pulse shape in the homodyne
detection can be calculated accurately. In particular, for the
most experimentally practical case where the output mean-
field pulse is directly used as the homodyne local oscillator,
the present theoretical framework can be used to predict the
obtainable squeezing ratio under different system parameters
and thus can be helpful for future SIT soliton squeezing ex-
periments. The theory has also been used to investigate the
possibility of generating quantum correlations between two
SIT solitons through the mediation of the atomic medium. It
is found that strong quantum correlations of two SIT solitons
can be established through the nonlinear light-atom interac-
tion. Unlike NLS solitons, an almost nonoverlapping SIT
soliton pair can still have reasonable large long-range quan-
tum correlations with a very short propagation distance due
to the longer-lived atomic response.

This work is organized as follows. We first derive the
coarse-grain-averaged light-atom interaction Hamiltonian to
determine the quantum operator evolution equations for the
whole system in Sec. II. Then the detailed formula for cal-
culating the required quantum noise properties based on the
backpropagation method is presented in Sec. III. The ob-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.80.033839

RAY-KUANG LEE AND YINCHIEH LAI

tained results for quantum squeezing and correlation are sub-
sequently shown and analyzed in Sec. IV. Finally, a brief
conclusion is given.

II. QUANTIZATION OF SIT SOLITONS

In this section, we begin our studies by deriving the valid
quantum operator equations for the SIT soliton system. In the
Heisenberg picture, the (fine-grain) interaction Hamiltonian
of ensemble two-level atoms with a traveling-wave light
field can be written as

Hipy = K2 AU (2000 = (000} (1)
J

Here U(z ;»1) is the (envelope) light field operator, p;(¢) is the
dipole moment operator of the jth atom at position z;, and K
is the coupling constant between the light filed and the at-
oms. For simplicity, a one-dimensional identical atomic dis-
tribution and a single polarization light resonant with the
atoms have been assumed. From basic quantum optics, the
atomic operators obey the following commutation relations:

[5;,p}1== 1, (2)
[p).i]]=-2p!, (3)
[ﬁj’ﬁj] = 2ﬁj~ (4)

Here 7; is the population inversion operator of the jth atom.
By defining the coarse-grain-averaged dipole moment and
population inversion density operators according to the fol-
lowing two expressions:

7+Az R

f Pzdz= 2 p0), (5)
z zSz_/-Sz+Az
7+Az R

f Nendz= 2 ), (6)
z 7=z;=z+Az

then one can rewrite the interaction Hamiltonian as follows:
Him:ihKf {U'(z,0)P(z,0) - PT()U(z,0}dz.  (7)

This is the coarse-grain-averaged interaction Hamiltonian
suitable for the SIT soliton studies. It is easy to prove that the
dipole moment and population inversion density operators
have to obey following commutation relations:

[P(z1,0), P (20,0)] = = N(z1,0) 8(z; — 22). (8)
[PT(21,0),N(z5,0)] = = 2P¥(21,1) 8(z, - 22), (9)
[P(z1,),N(z5,0)] = 2P(21,1) 8(z1 = 2). (10)

With above results, the complete Hamiltonian for a traveling
light pulse inside a two-level medium is then given by
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+iﬁKf (U (2,0 P(z,0) = PT(z,)) U(z,)}dz.  (11)

Here c is the light speed in the vacuum. We will require the

light field operator O(Zl,t) to satisfy the following equal-
time commutation relation:

[U(z1,0), U (z5,0)] = 821 - 25). (12)

This ~ commutation
fU'(z,0)U(z,1)dz has the physical meaning of the photon
number inside the whole light pulse.

From above Hamiltonian and related commutation rela-
tions, one finally arrives at the following quantum operator
evolution equations in the Heisenberg picture:

relation  also  implies  that

aU(z,1) B
a

YD b, (13)

aP(z.1)

P ZKAA](ZJ) lA](Z’t)’ (14)

IN(z,1)

p =—2K{PY (2,0 U(z,0) + UT(z.0) P(z,0)}.  (15)

These equations model the quantum effects of decayless en-
semble atoms rigorously and will be the starting point of our
quantum noise calculation. To further simplify the notation,
the evolution equations can be cast into the following nor-
malized form by introducing suitable normalization units:

aU(z,t) Uzt r«
=-— + —P(z,1), 16
ot 5 TP (16)

% = %N(z,t) Uz,1), (17)

IN(z,1)

=P eUEn+ TP} (18)
Here the normalization units for {f’(zl,t), }37(12,1‘), N(zz,t)}
have been chosen to be the density of atoms N,, the normal-

ization units 7, for time ¢ and u, for light field {U(z,1),

U'(z,1)} have been chosen to satisfy the following require-
ment: Kuyto=1/2. The normalization units z, for position z
have been chosen to be ct,. Finally, the normalized coupling
coefficient r=2KN,ty/ug=N,/ui=N,zo/ (ugzo)=n,/ n, now
has a simple physical meaning: the ratio between the atom
density N, and the photon number density units u% (since
np=u%z0 is the normalization units for the photon number).
Under such a normalization scheme, the commutation rela-
tions for all the operators now become
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N(z,.1)

a

[ﬁ(Z],I),ﬁ%(ZQ,t)] == 5(21 _22)’ (19)

ﬁT(Zlat)

[P (21,0),N(z5,0)] = =2 8z-z),  (20)

a

Pl 821 - 22), 1)

a

[P(Zl’t) N(Z2’t)] 2

(00,0 =0 -2). (22
P
Here n,=N,z is the number of atoms within one unit length.
One important remark should be made here. When n, and n,
are large, the collective quantum fluctuations of the atomic
and light field operators become much smaller compared to
their mean values. This is the case when the linearization
approximation can be justified for calculating the quantum
noise properties of the nonlinear problem, which is also the
scope considered in the present work.
Equations (16)—(18) have the following fundamental soli-
ton solution when the light filed is at exact resonance condi-
tion with the atoms [23]:

Uo(z.1) = sech{ %[r -1+ r)z]}, (23)
Py(z,1) = sech{ %[z -1+ r)z]}tanh{ %[t -1+ r)z]}, (24)

Ny(z,1) = sechz{%[t— 1+ r)z]} - tanhz{%[t -1+ r)z]}.
(25)

By adopting this solution form, we have implicitly assumed
that the normalization units u, for the light field has been
chosen to be the peak amplitude of the fundamental soliton
and thus n, is simply one-fourth of the soliton photon num-
ber in free space (since [”,|Uy|’dz=4). The n, can then be
physically interpreted to be the number of atoms seen by the
soliton. Such interpretation can help us to understand the
quantum noise calculation formula derived in the next sec-
tion. It should also be noted that the SIT solitons are also
slow lights with a reduced group velocity c¢/(1+7).

We should also note that although the above model is only
derived for the simplest case of SIT solitons, in principle, it
can be easily generalized to more complicated cases. For
examples, the frequency detuning case can be simply derived
by introducing a frequency shift term for the light field. The
inhomogeneous broadening effects can be included by add-
ing more atomic equations to represent atoms with distrib-
uted resonance frequencies. The effects of atomic decay can
be included by adding the atomic decay terms together with
the corresponding Langevin noise operators. All of these can
be implemented by the standard techniques and will not be
included here so as not to obscure the main points. Generali-
zation of the present theory to nonlinear quantum pulse
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propagation effects in multilevel atomic systems including
slow light solitons and quantum memories should also be
possible.

III. QUANTUM NOISE CALCULATION

In this section, we derive the required formula for calcu-
lating the quantum noise properties of SIT solitons based on
the general backpropagation method under the linearization
approximation framework [22]. By assuming that the photon
number and atom number seen by the soliton are both large
enough, the linearization approximation can then be justified
as stated in the previous section. By writing the perturbed
field operators of the light and the perturbed dipole moment
and population inversion operators of the atoms as follows
U= Uy+ii, I3=PO+13, and N=N0+ﬁ, the equations of motion
in the Heisenberg picture for the perturbed quantum opera-
tors i, p, and A can be derived from Egs. (16)—(18) and are
given by

Jd . Jd . r, (26)
iz —ii+—p,
z?tu é’zu 2p
Jd
(?_ = _(Uon +NOM) (27)
d ~ * A A~ % A A~
—A=—(Pyi+ UyP" + Ugp + Pyii"). (28)

ot

Under the linearization approximation framework, the per-
turbed operators #, p, and 7 now obey the following com-
mutation relations:

NO(Z]’I)

a

[p(z1.0).0 (2. 0)] == ———8(z) - 20). (29)

O(th)

[ﬁT(ZM),fl(ZzJ)] =-2——08z,-22), (30)

a

il =225 s 2y (3
[i(z1.1). 0} (22,1)] = — 021 - 22). (32)
n,

In particular, if all the atoms are originally in the ground
state at r=t,,, then the results are the simplest, i.e.,

[A(z1,1).P"(z2,1,)] = %5(21 -2), (33)

ii(z,t,) = 0. (34)

From these results and the assumption that the atomic system
is originally in the ground state, one can infer that before
interaction (at 7=1,,) the atomic fluctuations only comes from
the dipole moment fluctuations with its four correlation
functions given by (p(z ’tb)ﬁ(ZZ’tb»:(ﬁT(Zl )P (22, 1))
=(p"(21,1,)p(22,1,))=0 and (p(z, Jb)ﬁT(ZZ’tb»:nlﬂ&(Zl —2).
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Now by requiring the time conservation of the inner prod-
uct defined below

[+ ua" + p**p + p*p' + nii]dz,

—00

(uA,pA,nA

i,p.h) =
(35)

one can derive the following evolution equations for the ad-
joint system:

J J 1
A A A A
—ut=——u*—| =Nyp* =P , 36
ﬁtu ﬁzu (2 oP o' ) (36)
Jd r
A A A
—pt==—u’+ Uyu”, 37
P ¥ o (37)
inAz— 1(U P+ Ugp?) (38)
ot 20 o

In order to calculate the variance of the following general
measurement operator at time 7=z, by the homodyne detec-
tion:

M(te)=f [f1@i(z,,) + fr(2)d" (z,0)ldz,  (39)

one can simply backpropagate the adjoint system from 7=t¢,
to t=t, with the initial conditions at =¢, given by u*(z,t,)
=f,(2), p*(z,1,)=0, and n(z,,)=0. Due to the time conser-
vation of the inner product between the two systems (linear-
ized and adjoint), the measured operator can be rewritten as

A;I(te):f dz[u™ (z,1,)ii(z,1,) + UM (2. 1,)id " (2, 1,)

+ pA*(Z» lh)pA(Z» lh) + pA(Z9 tb)ﬁ.‘-(zs tb) + nA(Zs tb)ﬁ(Z» tb)] .
(40)

Since all the quantum properties of the operators at the origi-

nal time 7, are known, the variance of M(z,) can be calcu-
lated according to
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Var[zfd(te)]%1 f [nlluf*(z,tb)|2+nllp*‘(z,rb)@dz. (41)

P a

Here we have used the fact that the atoms are in the ground
state at t=t¢, such that the atomic fluctuations only comes
from the dipole moment fluctuations. The squeezing ratio of
the measurement then is

A J |:|MA(Z’tb)|2 + EE|pA(Z’tb)|2:|dZ
G Var[M(z,)] e ng,

- Var[M(1,)] ) Jw If(2)|?dz

—00

(42)

Equation (42) has an interesting physical implication.
When the atomic characteristic number n, (i.e., atom number
seen by the soliton) is much large than the photonic charac-
teristic number n, (i.e., one-fourth of the soliton photon
number), the contribution from the initial atomic fluctuations
will be reduced by a factor n,/n,. Physically, this is of
course a signature of the noise averaging effects caused by
the ensemble atoms. We shall also emphasize that the depen-
dence of the quantum squeezing on the atomic density is not
expected from the classical SIT theory and can only be de-
rived by a quantum theory from the fundamental light-atom
interaction Hamiltonian. In classical SIT soliton theories, the
coefficient r=n,/n, in Eq. (42) can be totally eliminated by
transforming to the moving coordinate and rescale the units
of z. This is not rigorously possible in the quantum theory
developed here.

If the following two operators are measured by two ho-
modyne detectors:

M) = | [f11@izt) + f(2d (z,1,)]dz,  (43)

-0

Mz(fe)=f [ﬁZ(Z)ﬁ(Z,te)+fL2(Z)uA+(Z»te)]dZ» (44)

then the corresponding quantum correlation between the two
operators can be calculated according to the following for-
mula:

Mty i (zry)) + %@?(z,zmpé(z,rb»

Cp=

(45)

a

V (<u?(z,tb>|u?<z,zb>> . %<p?<z,rb>|p?<z,zb>>) (<u3<z,rb>lu§(z,zb>> . Zl<p§<z,zb>|p3<z,rb>>)

a

Here u?’z(z,tb) and p?’z(z,tb) are the backpropagated adjoint solutions with f7 5(z) as the initial conditions, respectively, and

the inner product of two functions is defined according to

Ni@olfa(z0) = f Re[fi(z.0)fa(z.1)]dz, (46)

Equations (42) and (45) are the main results of the present work, which will be used to study the quantum properties of SIT

solitons in the following sections.
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IV. QUANTUM SQUEEZING AND INTERSOLITON
CORRELATION

In this section, we use the derived formula to calculate the
quantum squeezing and correlation of SIT solitons after pass-
ing through a two-level medium of length L. The fundamen-
tal soliton solution in Eq. (23) will be used as the classical
soliton solution for performing linearization. Equation (23) is
the field solution inside the medium. Before and after the
medium, the solution is still given by Eq. (23) but with r
=n,/n,=0. If the homodyne detection is used for the detec-
tion of the quantum fluctuations in SIT solitons, then the
measured operator is given by Eq. (39) with f;(z) being the
local oscillator of the homodyne detection. Note that in the
free space after the medium, f;(z) is not only the local oscil-
lator field distribution in the normalized z space but also the
local oscillator field distribution in the normalized time do-
main with the two normalization units related by zg=ct,. In
the following, for convenience, we stay in the z coordinate to
express the projection operation of the homodyne detection,
even though in practice it is integrated over the ¢ coordinate
outside the medium. According to the soliton perturbation
theory developed previously [9,15], one can use the follow-
ing projection functions to project out the four perturbed
soliton parameters: photon number, phase, momentum (fre-
quency), and position,

@)= sech(%) , (47)
fg(Z):i|:1 —%*tanh(%)}sech(%), (48)
@) =i tanh(%)sech(%) , (49)
f2)=z sech(%). (50)

A local oscillator that detects only the soliton parts can be
expressed in general by

f1(@) =y % f(2) + ca % fol2) + c3% f,(2) + ¢y £(2),
(51)

with the linear superposition coefficients ¢ 5 3 4. By minimiz-
ing the squeezing ratio with respect to the four coefficients c;
to ¢4, monotonically increasing squeezing as a function of
the propagation distance can be detected as shown in Fig. 1,
when the optical soliton is at exact resonance with the two-
level medium. The results are calculated by the analytical
formula presented in our previous work [15] and they can
serve as a good checking point for the correctness of the
numerical backpropagation calculation developed in the
present work.

By examining the optimum local oscillator pulse shapes
determined this way, we find that when at exact resonance,
the maximum squeezing is solely caused by the coupling of
the perturbed photon number and position operators, not in-
cluding the perturbed momentum and phase operators. In

PHYSICAL REVIEW A 80, 033839 (2009)

Squeezing Ratio (dB)

& .
AT AT AT AT AT
AR A T A TR AL A AT~
R
R s

AT

FIG. 1. (Color online) Optimum squeezing ratio versus propa-
gation distance and frequency detuning by detecting only the soli-
ton parts and with r=1. Calculation from the analytic perturbation
theory.

contrast to the case of NLS solitons, this fact implies that at
exact resonance there will be no squeezing at all if the output
sech soliton pulse with only a possible phase shift is directly
used as the local oscillator. Since in practical soliton squeez-
ing experiments, the output sech pulses are the most conve-
nient local oscillator source for the homodyne detection, the
above-stated fact may seriously limit the squeezing detection
for SIT solitons. To overcome this limitation, one possibility
is to detune the soliton center frequency to be a little off
resonance. When not at exact resonance, the perturbed pho-
ton number operator begins to influence the perturbed phase
operator and the optimum local oscillator pulse shape should
be more close to the sech soliton pulse shape with a possible
phase shift. However, it has also been well known that when
the sech soliton pulse shape is used as the local oscillator, the
contribution of the field continuum parts will enter the detec-
tion. For such cases, the squeezing ratio can only be ana-
lyzed by numerical calculation like the backpropagation
method [22].

Figure 2 shows the calculated squeezing ratio for different
atomic medium lengths and light frequency detunings with
r=1. It can be seen that although the detectable squeezing
ratio is somewhat reduced, monotonically increasing squeez-
ing still can be expected when the frequency detuning is
suitably adjusted to be around 0.5 normalization units. An-
other possibility of further squeezing detection enhancement

Squeezing Ratio (dB)

5
_% 2
-4 15
0 1 detuning

10
distance 15

FIG. 2. (Color online) Optimum squeezing ratio versus propa-
gation distance and frequency detuning by using a sech local oscil-
lator pulse shape with a phase shift only. r=1 is assumed.
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Squeezing Ratio (dB)

FIG. 3. (Color online) (a) Optimum squeezing ratio versus
propagation distance and frequency detuning by using a sech local
oscillator pulse shape, but with both position and phase shifts. r
=1 is assumed.

is to stay at exact resonance, but the output sech soliton pulse
shape is now also position shifted instead of phase shifted
only. This can be expected by the observation that the linear
combination of f,(z) and f.(z) should be very close to a
position-shifted sech function. Figure 3 shows the detectable
squeezing ratio for different medium lengths and frequency
detunings when the sech local oscillator pulse is both opti-
mally phase shifted and position shifted. The obtained results
in Fig. 3 are almost the same as those in Fig. 1. For com-
parison, in Fig. 4 we show the difference of achievable
squeezing ratio in dB scale between the results in Figs. 1 and
3 (i.e., Figs. 1-3). The squeezing degradation mainly shows
up for the cases under off-resonance condition and long
propagation distance. At resonance, the achievable squeezing
ratio is very close to the soliton part result. In fact, it can be
even a little smaller than the soliton part case due to the fact
that the linear combination of f,(z) and f,(z) is not exactly a
position-shifted sech function and that the introduced field
continuums may help to improve the squeezing in some
cases. In this way, the required local oscillator can be simply
the sech pulse instead of a much more complicated pulse
shape given by Eq. (51). This should be the easiest way for
practical experiments to perform the homodyne detection
and the obtained results here should be very useful for help-
ing design future SIT squeezing experiments.

One interesting question here is how much contribution
comes from the initial atomic noises? We find that for all the

Difference of Squeezing Ratio (dB)

FIG. 4. (Color online) Difference of achievable squeezing ratio
in dB between the cases in Figs. 1 and 3.

PHYSICAL REVIEW A 80, 033839 (2009)

LA SLUN
-+ b=
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FIG. 5. (Color online) Schematic illustration of quantum corre-
lation generation for a SIT soliton pair.

soliton cases considered above, the impacts of the initial
atomic noises on the achievable squeezing ratio can be to-
tally ignored, as long as the simulation time window [7,,2,] is
large enough to cover almost all the response tails of the
backpropagation. Intuitively, this is because the backpropa-
gated adjoin system solution travels mostly backward outside
the medium and, thus, the left excitation of the dipole mo-
ment part at , will be very small when ¢, is early enough in
relative to the collision time. The generation of squeezing in
these cases is thus mainly through the nonlinear mediation of
the atoms on the optical field. This should not be true if the
input pulses are not exact solitons.

In our studies, we have also found that two-time-
multiplexed SIT solitons can become quantum correlated
through the mediation of the atomic medium. The photon
number correlation can be very large if the two in-phase
solitons are close to each other and the propagation distance
is long enough, just as the NLS solitons in optical fibers [24].
Figure 5 shows an illustration on how to establish the quan-
tum correlations between two SIT solitons by varying the
separation 7, After passing through the atomic media, we
calculate the quantum correlations of the photon number op-
erators between the soliton pair. In Fig. 6, we show that a
certain degree of quantum correlation in photon numbers can
be established when the two solitons are in phase. The quan-
tum correlation increases as the separation decreases due to
stronger overlapping. It also increases as the propagation dis-
tance increases due to accumulated nonlinear effects. A more
interesting result found is the situation when the two solitons
are almost nonoverlapping (i.e., 7,=20). One will expect that
some quantum correlations may still get established through
the long-live atomic perturbations. The following cases of
number-number, number-phase, phase-number, and phase-
phase correlations are more interesting and unexpected. Fig-
ure 7 shows the dependence of all the four quantum correla-
tions as functions of the propagation distance when the two

Number—Number Correlation

f—‘-
0.8 e
td
0.6
* ’
4
0.4
rd
I’ -
0.2 - _ -
r” -
- — -

distance
10 20 30 0

FIG. 6. (Color online) Photon number correlation established
between two in-phase solitons as a function of the propagation dis-
tance for several soliton separation 7,4, i.e., solid line (black): #,
=14; short dashed line (red): 7;=16; and long dashed line (green):
t,=20. r=1 is assumed.
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(a) Number—Phase Correlation (b) Number—Number Correlation
03

0.001
02

distance
0.1 —oo001f ! /2 3 )\5
~0.002
1\2 3 4 5 ~0.003
-0.1

(c) Phase—Phase Correlation .
0.004 (d) Phase—Number Correlation

distance
0.003 —0.001 2 3 4
0.002 -0.002
0.001 -0.003
-0.004
1 2 3 4

FIG. 7. Quantum correlations established between two /2 out-
of-phase solitons as functions of the propagation distance for the
components in (a) Number (first soliton) phase (next soliton); (b)
number number; (c) phase phase; and (d) phase number. Soliton
separation 7;,=20 and r=1 are assumed. Local oscillator functions in
the form of sech and i*sech are used for the photon number and
phase detections, respectively.

SIT solitons are /2 out of phase. Due to the oscillating field
continuum and atomic noises in space, the curves of quan-
tum correlation also oscillate as functions of the propagation
distance. The separation of the two solitons here is larger and
the interaction through tail overlapping is expected to be
very small as can be seen from Fig. 6. It is thus surprising to
see that the number (first soliton)-phase (next solition) cor-
relation can reach above 0.32 after a very short propagation
distance (only 0.5 unit length). The values of the quantum
number-phase correlation are about tenfold larger than those
in other three correlation functions when the same interac-
tion length is considered. In particular, the number(first
soliton)-phase (next soliton) correlation and the phase (first
soliton)-number (next soliton) correlation are also not the
same. These results are mainly due to the fact that the atomic
responses of the linearized system (original or adjoint) are
relatively longer lived. Therefore, the quantum noises of the
first soliton will be able to more strongly influence the sec-
ond soliton to establish the unsymmetrical quantum correla-
tions between the two solitons. The achieved soliton number-
phase correlation in this case is of particular interest for the
potential application of QND measurement. The photon
number of the first soliton is a conserved quantity during
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propagation and its quantum noises can be somewhat in-
ferred by detecting the phase of the second soliton, even
though the achieved correlation coefficient is only around
0.32 from the present numerical simulation. In principle, it
may still be possible to detect even stronger quantum corre-
lation between different operator pairs if more optimized lo-
cal oscillator pairs are used, just as in the case of NLS soli-
tons [25]. Cascaded QND schemes may also be used to
obtain more information about the measured soliton photon
number. These are just some of the possible directions for
further studies along this line.

V. CONCLUSION

In conclusion, a quantum theory that can accurately
model and calculate the quantum noises and quantum corre-
lations of self-induced transparency solitons has been devel-
oped. The nonlinear quantum effects of atoms are taken into
account rigorously. SIT solitons are not only slowing down
but also get squeezed due to the nonlinear light-atom inter-
action. We have shown that for the detection of SIT soliton
squeezing, a sech local oscillator pulse shape with a suitably
adjusted position shift as well as phase shift can be used to
achieve a close-to-optimum squeezing ratio at the case of
exact resonance. Similar to the NLS solitons, strong quantum
number-number correlation between two in-phase SIT soli-
tons can also be established through the tail overlapping in-
teraction. Most important of all, unlike NLS solitons, an al-
most nonoverlapping /2 out-of-phase SIT soliton pair can
still establish a reasonably large long-range quantum
number-phase correlation through the longer-lived atomic re-
sponse. Further generalization of the theory to slow/fast soli-
tons in multilevel atomic systems [26,27] can also be carried
out. All of these findings should open the whole possibilities
of utilizing the solitons in atomic systems for quantum
squeezing/correlation generation and applications.
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