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We present a theoretical investigation of high-order-harmonic generation (HHG) via bichromatic plasmonic
near fields with metal nanoparticles. Bichromatic plasmonic near fields, which depend on temporal waveform
synthesis, are generated when a metallic nanoparticle subjected to a moderate-intensity (<1012 W/cm2)
bichromatic few-cycle pulse. By means of a windowed Fourier transform of the time-dependent acceleration, we
show that the differences in energies and level crossing between the adiabatic states of a two-level Hamiltonian
are responsible for the cutoff energy of harmonics. Thus, we can manipulate the adiabatic states, and consequently
the HHG spectra, by means of the bichromatic plasmonic near fields. In contrast to the case of a monochromatic
field alone, a significant cutoff extension can be achieved via optimization of the bichromatic few-cycle pulse.
Moreover, the supercontinuum in the bichromatic field shows a higher energy spectrum along with a broader
bandwidth, which is beneficial for the efficient generation of broadband-isolated ultrashort extreme ultraviolet
pulses from few-cycle laser fields.
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I. INTRODUCTION

High-order-harmonic generation (HHG) is a well-
established process for producing extreme-ultraviolet (XUV)
pulses and attosecond pulses, which also acts as a pre-
requisite for the attophysics [1–12]. This physical process
can be well understood by the three-step model [4–6]:
ionization, acceleration, and recombination of the electrons,
where bound-continuum transitions driven by an intense laser
field (∼1014 W/cm2) are involved. In a necessary intensity
regime (1012–1014 W/cm2) [13–21], apart from the three-step
model [4–6], a simplified model has been proposed to describe
HHG [15–19]. In this regime where bound-bound transition
only is considered, HHG can be described in a completely
different model called the “two-level atom” [15–19]. In
this theory [16], HHG is a consequence of the population
transfer between the field-dependent states that come from
diagonalization of the two-level Hamiltonian.

HHG requires peak intensities higher than 1014 W/cm2 for
the incident field, thus, HHG typically relies on complex and
expensive femtosecond laser amplifier systems with repetition
rates in the few-kilohertz range. Over the past decades,
different approaches have been followed to achieve HHG
with a significant reduction in the threshold pump power.
One of the effective schemes was obtained from surface
plasmonic resonances that can locally amplify laser field using
gold bow-tie-shaped nanostructures [22]. Therein, when a
low-intensity femtosecond pulse drives the plasmonic mode
in a metallic nanoparticle (MNP), a highly amplified electric
field can be created, and with injection of noble atomic gases
near the MNP, HHG can be achieved. Recently, there have
been numerous studies [22–44] on HHG driven by enhanced
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fields using plasmons, in which some novel prospects for
and interpretation of the electron dynamics induced by these
enhanced fields from dielectric nanoparticles, MNPs, and
metal nanotips are presented.

It is noteworthy that, by using the two-level atom
model [15–19], we have investigated HHG in an MNP–
semiconductor quantum dot (SQD) hybrid system with a
moderate-intensity monochromatic field [43]. Therein, the
energies and populations between the adiabatic states of the
two-level Hamiltonian, and consequently the HHG spectra,
can be manipulated by modulating the interparticle distance
between the MNP and the SQD. However, it is difficult
to manipulate the few-nanometer distance between MNP
and SQD in technology. Thus, another question arises: Can
we control HHG with a more effective approach than the
previous scheme [43]? In this paper, we investigate HHG using
bichromatic few-cycle plasmonic near fields in an SQD and
MNP hybrid system. This should not be confused with the
investigation of HHG using enhanced near fields that drive the
bound to the continuum transition in the surrounding atomic
or molecular gas [22–42]. We show that high-order harmonics
can be produced even at the modest intensity of the few-cycle
pulse where both tunneling and multiphoton ionizations hardly
take place. It is found that the differences in energies between
the adiabatic states of the two-level Hamiltonian are responsi-
ble for the cutoff energy of harmonics. Thus we can manipul-
ate the adiabatic states, and consequently the HHG process, by
modulating the relative intensity and the relative phase of the
bichromatic fields. In contrast to the case of a monochromatic
field alone [43], a significant cutoff extension can be achieved
via optimization of the bichromatic few-cycle pulse and the
supercontinuum in the bichromatic field shows a higher energy
and a broader bandwidth, which is beneficial for the efficient
generation of broadband-isolated ultrashort XUV pulses from
few-cycle laser fields.
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FIG. 1. Schematic of the hybrid system consisting of an SQD
and an MNP. The centers of the two particles are separated by a
distance represented by R. The incident bichromatic few-cycle pulse
propagates along the y axis with polarization along the z axis.

II. THE MODEL AND BASIC EQUATIONS

The hybrid system under consideration is illustrated in
Fig. 1. The device is composed of a spherical MNP of radius
a and a spherical SQD of radius b in an environment with
dielectric constant ε0. The center-to-center distance between
the two particles is denoted R. The parameters of the system,
i.e., the size of the SQD and MNP and the center-to-center
distance between two particles, are chosen such that the SQD
has small dimensions, b � a, and the size of the MNP is
constrained as a < R. We consider this hybrid system driven
by a bichromatic few-cycle pulse. In our simulation, the
bichromatic few-cycle pulse is synthesized by a fundamental
pulse and a control pulse. The incident bichromatic few-cycle
pulse can be synthesized by a fundamental pulse and an
additional low-frequency control pulse with electric field

E(t) = E0f (t) sin[ω0(t − 2T0)]

+ qE0f (t) sin
[

1
2ω0(t − 2T0) + φ

]
, (1)

where E0 and ω0 are the electric-field amplitude and the
angular frequency (T0 = 2π/ω0 is the optical oscillation cycle
time) of the fundamental driving pulse. The parameters q and
φ denote the field-strength ratio and relative phase between
the fundamental and the control pulses, respectively. The
pulse envelope is centered at 2T0 and is given by f (t) =
exp[−4 ln 2( t−2T0

τ
)2], with τ the pulse duration (full width at

half-maximum). In our simulation, the incident bichromatic
pulse propagates along the y axis with polarization along the
z axis.

We focus on the response of a hybrid nanostructure
consisting of an SQD and an MNP subjected to an applied
bichromatic few-cycle pulse in a weak-field regime where
both tunneling and multiphoton ionization hardly take place.
Here the SQD is characterized by a two-level system, with
|0〉 being the ground state and |1〉 being the single-exciton
state. The electric field excites both the interband transition in
the SQD and the surface plasmon in the MNP. This surface
plasmon influences the exciton and induces electromagnetic
interactions between exciton and plasmon [45–47]. This
interaction is responsible for the coupling between the two
particles and leads to the Förster energy transfer [48]. The
total field felt by the SQD can be given as ESQD(t) = E(t) +
gPM/(εeffR

3), where εeff = (2ε0 + εs)/3ε0, with ε0 and εs the

dielectric constants of the background medium and the SQD,
respectively. When E(t) is parallel to the long axis of the
MNP, the constant g is 2 for the complex with a to-the-end
orientation. The dipole of the MNP PM = αMEM comes from
the charge induced on the surface of the MNP with the
dipole polarization αM = ε0(εm − ε0)/3[(εm − ε0) + ε0] and
the field felt by the MNP EM (t) = E(t) + gPSQD/(εeffR

3).
The corresponding enhancement factor within the hybrid
complex is f (ω) = 1 + gαM/(εeffR

3). The dipole of the SQD
is PSQD = μ[C∗

0 (t)C1(t) + C∗
1 (t)C0(t)], where μ is the dipole

moment of the transition |0〉 ↔ |1〉 and Cj (t) (j = 0,1) is the
probability amplitude of state |j 〉.

An SQD with exciton vacuum state |0〉 and exciton state
|1〉 can be described by a two-level atom model in which the
SQD interacts with a classical bichromatic driving field, and
the Hamiltonian in field-free states can be given by

HD

�
=

(
− 1

2ω10 	(t)

	(t) 1
2ω10

)
, (2)

where ω10 and 	(t) = μE(t)f (ω)/� are the transition fre-
quency between state |0〉 and state |1〉 and the time-dependent
Rabi frequency of the plasmonic near field, respectively.
Within this picture, we define the time-dependent wave
function ψ(t) = C0(t)|0〉 + C1(t)|1〉. The evolution of the
system can be described by the time-dependent Schrödinger
equation i�dψ(t)/dt = HDψ(t). In order to diagonalize the
field-free Hamiltonian HD , we adopt an important set of bases
called adiabatic bases, which means that the states follow
the field. The diagonal Hamiltonian is obtained by the uni-
tary transformation HA(t) = UHDU † with U = exp[−iθσy],
where θ = 1

2 arctan(2	(t)/ω10) and σy is the Pauli matrix.
Applying this transformation, the adiabatic states |0〉A and
|1〉A can be given by |0〉A = cos θ |0〉 + sin θ |1〉 and |1〉A =
− sin θ |0〉 + cos θ |1〉, respectively. In the adiabatic basis, the
adiabatic energies of the two adiabatic states can be calculated
as ε± = ± 1

2

√
ω2

10 + 4	2(t). Then ψ(t) can be written under
the adiabatic basis ψ(t) = d0(t)|0〉A + d1(t)|1〉A, with the
corresponding motion equation

i
∂

∂t

(
d0(t)

d1(t)

)
=

[
− 1

2	A(t) −iω10	̇(t)
[	A(t)]2

iω10	̇(t)
[	A(t)]2

1
2	A(t)

](
d0(t)

d1(t),

)
(3)

with 	A(t) = ε+ − ε− as the energy difference between
the two adiabatic states. The harmonic spectrum can be
obtained by Fourier transforming the time-dependent dipole
acceleration, which is given by

P (ω) =
∣∣∣∣
∫

a(t)e−iωtdt

∣∣∣∣
2

, (4)

where a(t) = −μω2
10[A(t) cos 2θ + B(t) sin 2θ ] +

2ω10μ	(t)[B(t) cos 2θ − A(t) sin 2θ ] is the time-dependent
dipole acceleration with A(t) = d∗

0 (t)d1(t) + d∗
1 (t)d0(t) and

B(t) = |d0(t)|2 − |d1(t)|2. The dipole acceleration a(t) is
the superposition of two terms, i.e., the crossed term A(t)
and the population difference B(t) between the adiabatic
states |0〉A and |1〉A. It has been confirmed that HHG is
always related to abrupt population transfers [16], which
leads to periodic level crossings and avoided level crossings
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at particular times. Without any loss of generality, we define
that t1 and t2 correspond to the level-crossing times and the
avoided level-crossing times, respectively. In order to extract
these times from the time-dependent dipole, we can examine
the detailed spectrum and temporal structure of HHG via
a time-frequency analysis [49,50] of HHG by utilizing the
wavelet transform of the induced dipole acceleration a(t),
which is given by

Sω(t,ω) =
∫

a(t ′)
√

ωW [ω(t − t ′)]dt ′, (5)

where W (x) is a windowed oscillating function and is chosen
to be the complex Morlet wavelet W (x) = 1√

πfb
ei2πfcxe−x2/fb ,

where fc and fb are dimensionless parameters, determining the
wavelet center frequency and wavelet bandwidth, respectively.

In order to calculate the time-dependent dipole acceleration
a(t), we have to solve the motion equation, (3), in the
adiabatic basis. As far as we know, no closed-form solution
of the nonlinear differential equation, (3), exists for fields
of arbitrary temporal profile in the present complex system.
In the following, we employ the fourth-order Runge-Kutta
algorithm approach for solving Eq. (3) numerically. In our
simulation, the bichromatic few-cycle pulse is synthesized
by a fundamental pulse and a control pulse. The frequency
and peak intensity of the fundamental pulse are chosen as
�ω0 = 0.25 eV and E0 = 5.7 × 1011 W/cm2, respectively,
with the duration τ = 1.5T0. The peak intensity of the control
pulse is denoted qE0. For the SQD, we take εs = 6ε0 (with ε0

the dielectric constant of the vacuum) and μ = 0.65e nm. For
the exciton resonant energy we take �ω10 = 2.5 eV. These
parameter values correspond to the typically CdSe-based
quantum dots [51] and have been used in several previous
works [47,52,53]. For the MNP, we take εm(ω) as the bulk
dielectric constant of gold as found experimentally [54]. For
a small, spherical, gold MNP, we take the radius of the MNP
a = 7.5 nm.

III. HIGH-ORDER-HARMONIC GENERATION

In this section, we focus on HHG resulting from the
interaction of an SQD with localized surface plasmons.
Plasmonic near fields are produced when an MNP is subject
to a bichromatic few-cycle laser pulse. Here we consider
a weak-field regime where both tunneling and multiphoton
ionization hardly take place. The SQD is characterized by
a two-level system, with |0〉 being the ground state and
|1〉 the single-exciton state. Recently, we have shown that
the particle diameters and interparticle distances can be
optimized to support both a large field enhancement and a
large interaction volume for HHG [43]. Differently from our
previous work [43], here we consider the bichromatic driving
field denoted by Eq. (1). Compared with Ref. [43], we find
that the present work has the following merits: (i) instead of
varying the distance between the MNP and the SQD, here the
cutoff energy of harmonics can be extended by changing the
field-strength ratio and relative phase between the fundamental
and the control pulses; (ii) the connection between HHG
and periodic level crossings is confirmed, i.e., the differences
in energies between adiabatic states are responsible for the
cutoff energy of harmonics; (iii) a high-energy and a broad-

bandwidth supercontinuum is achievable, which is beneficial
for the efficient generation of broadband-isolated ultrashort
XUV pulses from few-cycle laser fields; and (iv) a qualitative
discussion of the plasmonic field enhancement of HHG in a
realistic ordered array of gold nanoparticles is provided.

Depending on the temporal waveform synthesis of the
bichromatic field, the cutoff of the spectra is given by the
maximum of 	A(t). To obtain the maximum possible cutoff
energy of HHG, the avoided level crossings between adiabatic
states must occur at the time t2M that the energy difference
ε+ − ε− reaches the maximum. Thus, to derive the level-
crossing times t1, as well as the time t2M corresponding to
the maximum cutoff energy, we should obtain the maximal
value ±εA

M of the adiabatic energies ε±. For the bichromatic
field in Eq. (1), the explicit expression of the times t1 and t2M

can be given by

cos(ω0t) + q

2
cos

(
1

2
ω0t + φ

)
= 0, (6)

sin(ω0t) + q sin

(
1

2
ω0t + φ

)
= 0. (7)

The time corresponding to the maximum energy difference
t2M is defined by Eq. (6); the level crossing time t1 is given
by Eq. (7). From Eqs. (6) and (7), one finds that the times
t2M and t1, as well as the corresponding maximal values,
depend on the field-strength ratio q and the relative phase
φ. Therefore, the time-dependent plasmonic enhanced field
and adiabatic energies, as well as the harmonics spectra, can
be controlled by the parameters q and φ. In the present paper,
we provide comparative results for different cases, i.e., only
the fundamental pulse q = 0, different relative phases φ, and
different field-strength ratios q. First, we present the effects
of the MNP on the incident bichromatic pulse. The cor-
responding plasmonic field enhancement spectra of the MNP
for different field-strength ratios (i.e., q = 0, q = 0.5, and
q = 0.8) and different relative phases (i.e., φ = 0 and φ =
π/2) are shown in Fig. 2(a). This figure shows that modifying
the incident pulse by the MNP has the direct consequence of
enhancing and reshaping the field. Also, one finds from this
figure that the enhancement effect for the bichromatic field case
(q 	= 0) is more profound than that for only the fundamental
field case (q = 0). The maximum field enhancement exceeds
7 for q = 0.8 and φ = 0. In this case, the intensity of
the incident pulse is enhanced up to intensities higher than
1012 W/cm2, which is the necessary intensity to generate
high-order harmonics. Compared with the results for φ = 0,
the figure also shows that the locations of enhanced temporal
pulse peaks become small and deviate slightly with respect to
time for the case of φ = π/2. The corresponding harmonic
spectra based on Eq. (4) for different field-strength ratios q

and relative phases φ are shown in Fig. 2(b). One general
common feature of the HHG power spectra for these different
cases is the appearance of a plateau and a sharp cutoff. In
comparison to the case of only a fundamental incident pulse
(q = 0), the notable difference in the HHG power spectra is
that the harmonics cutoff energy can be extended for the case
of a bichromatic incident pulse (q 	= 0). As shown in Fig. 2(b),
the cutoff energy is about 100ω0 for q = 0, 230ω0 for q = 0.5
and φ = 0, 220ω0 for q = 0.5 and φ = π/2, 350ω0 for q = 0.8
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FIG. 2. (a) Field enhancement of an MNP on an incident Gaussian-shaped bichromatic pulse for different field-strength ratios q and relative
phases φ, i.e., q = 0 (thin solid line); q = 0.5, φ = 0 (dashed line); q = 0.5, φ = π/2 (dotted line); q = 0.8, φ = 0 (dash-dotted line); and
q = 0.8, φ = π/2 (thick solid line). (b) The corresponding HHG spectra for different cases. Other parameters are chosen as a = 7.5 nm,
R = 11 nm, �ω0 = 0.25 eV, and τ = 1.5T0.

and φ = 0, and 320ω0 for q = 0.8 and φ = π/2, in which the
maximal energy of the HHG can reach the XUV regime, i.e.,
87.5 eV. These results imply that we can save the power of
the incident field significantly for HHG with a high cutoff
energy via choosing an appropriate additional control pulse.
In addition, Fig. 2(b) also shows that the power spectrum of
the HHG has an obvious dependence on the relative phase φ.
One finds from this figure that the difference in the HHG power
spectrum for different φ appears near the cutoff region, where a
broadband quasicontinuum region can be observed for φ = 0.
Another difference in the HHG spectrum is that the maximal
cutoff energy for φ = 0 is higher than the one for φ = π/2. As
a matter of fact, the relative phase-dependent effects are more
notable when the pulse becomes shorter [21,55].

Nevertheless, the power spectra of HHG alone do not
provide enough information on the physical mechanism
responsible for the cutoff extension. Concerning HHG, it has
been shown that the periodic level crossings caused by the
temporal dependence of the laser field are very important [16].
Therefore, in order to understand the harmonic spectra in this
context, we should examine the interplay between these level
crossings and HHG. In the following we perform simulation
of the time evolution of field-dressed states by using the driven
two-level atom model [15–17,43], which is very convenient for
studying level crossings. Similarly to the classical three-step
model, the driven two-level atom model can also be understood
with three steps [16]: first, population transfers from the
field-dressed state |0〉A to state |1〉A at level-crossing times
t1; second, the system’s gaining energy from the field; and
finally, population transfers from state |1〉A back to state |0〉A
at the avoided level-crossing times t2 accompanied by the
energy released in the form of harmonic radiation. The main
contribution to the highest harmonic generation takes place at
time t2M , corresponding to the maximal energy difference of
the adiabatic states. The instantaneous frequency of harmonics
is given by the energy difference between the two adiabatic
states,

	A(t) = Mωp = ε+ − ε− =
√

ω2
10 + 4	2(t). (8)

The difference has a minimum of ω10 and a maximum of

	A
max(t) = Mmaxωp =

√
ω2

10 + 4	2
max(t), (9)

where Mmax denotes the highest order of the harmonics.
According to Eq. (9), the cutoff energy depends on the
maximum of the enhanced electric field 	max. We have shown
in Fig. 2 that the maximum value of the enhanced electric field
	max is sensitive to the field-strength ratio q and the relative
phase φ. Thus one can control the cutoff energy by modulating
q and φ.

To facilitate exploration of the underlying mechanism
responsible for the cutoff extension modified by the field-
strength ratio between the fundamental and the control fields,
we first perform a classical simulation of the time profiles of
field-dressed energies ε±. As shown in Figs. 3(a) and 3(b),
the time evolution of adiabatic energies significantly depends
on the field-strength ratio q. These results can be understood
from the expression of ε± that the adiabatic energies are
effectively determined by 	2(t), whose maximal value of 	(t)
is sensitive to q. The larger energy difference corresponds to
the higher harmonic generation at times t2 where the avoided
level crossings occur, and the maximal energy difference
corresponds to the highest HHG at times t2M . In the case
of φ = 0, we can obtain the positive root for different field-
strength ratios q by solving Eq. (6) as

t2M = 2

ω0
arccos

[
1

8
(−q ±

√
32 + q2)

]
. (10)

Equation (10) shows that the time t2M yields different
values for different field-strength ratios q. As illustrated in
Figs. 3(a) and 3(b), the absolute maxima of adiabatic energies
corresponding to the highest HHG occur, respectively, at t2M =
1.55T0 in the case of q = 0.5 and t2M = 1.60T0 in the case of
q = 0.8. This is partially confirmed by Figs. 3(c) and 3(d),
where the populations of the adiabatic states are plotted as
functions of time (in units of the field cycle T0). In Figs. 3(c)
and 3(d), one can see that the avoided level crossings of the
adiabatic states take place at time t2, and the maximal avoided
level crossings correspond to the times t2M . In addition, there
are several sharp peaks for both populations of the field-dressed
state |0〉A and state |1〉A at times t1, which indicates that most
population transfer has taken place. However, there are several
small peaks, which implies that population transfer also occurs
at other times. Direct comparison of the cases q = 0.5 and
q = 0.8 in Figs. 3(c) and 3(d) shows that the level crossings
and avoided level crossings resulting from population transfer
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FIG. 3. (a),(b) Adiabatic energies (given in units of the maximal energy εM
± ) ε+ (upward line) and ε− (downward line) of the adiabatic

states |0〉A and |1〉A for different cases, i.e., (a) q = 0.5 and (b) q = 0.8. (c),(d) Populations |dj (t)|2 of the corresponding adiabatic states, i.e.,
(c) q = 0.5 and (d) q = 0.8. Values of other parameters are chosen the same as in Fig. 2(a) except for φ = 0.

between the adiabatic states have a sensitive dependence on
the field-strength ratio q. The main reasons are based on the
fact that near-field enhancement results from the MNP for a
higher field-strength ratio induces a larger energy difference
between the adiabatic states. In addition, Figs. 3(c) and 3(d)
also show that the population transfers exhibit asymmetries
very similar to the ones observed in the field-dressed ener-
gies. The broad level crossings of the adiabatic population
evolution correspond to longer time intervals than the sharp
level crossings, which causes the oscillations of |dj (t)|2 to
exhibit asymmetric shapes. This asymmetry becomes pro-
nounced slightly as the field-strength ratio q increases from
0.5 to 0.8.

Similar asymmetric features occur in the time evolution
of the dipole acceleration a(t). As shown in Figs. 4(a)
and 4(b), the time evolution of a(t) exhibits intense oscil-
lations including nodes and antinodes, respectively, at the
level-crossing times and avoided level-crossing times. In our
previous work for only the fundamental driving case [43],
the nodes corresponding to level-crossing times cover almost-
equal temporal intervals. However, here for the bichromatic
driving case, these equal temporal intervals are broken due to
the application of the additional control pulse. Thus Figs. 4(a)
and 4(b) exhibit narrower and broader nodes, corresponding
to narrower and broader level-crossing times, respectively.
Figures 4(c) and 4(d) show the modulus of the quantum
time-frequency profile corresponding to the different field-
strength ratios q = 0.5 and q = 0.8, respectively, obtained
by the wavelet transform of the induced dipole acceleration
in Eq. (5). One finds that the time-frequency spectra share
a similar shape with the positive branch of the adiabatic
energies in Figs. 3(a) and 3(b). These interesting results

can be understood from Eq. (8), which indicates clearly
that the harmonic order M is proportional to the adiabatic
energy ε+. For the case q = 0.5, there are three major
emission bursts shown in Fig. 4(c). Similarly, for q = 0.8,
there are three major emission bursts shown in Fig. 4(d).
Each emission time remarkably corresponds to the avoided
level-crossing times t2. It should be noted that the center peak
corresponding to the highest harmonic generation shown in
Fig. 4(d) is considerably higher than that in Fig. 4(c). As a
result, the maximum photon energy of the cutoff harmonics
(corresponds to the center peaks) in Fig. 4(d) is extended by
more than 120 harmonic orders compared with the one in
Fig. 4(c). In addition, there is an obvious extension in the
time-resolved spectra for the cutoff harmonics, with respect
to the monochromatic case [43]. A plausible explanation
regarding the cutoff extension mechanism is that due to the
adiabatic energy’s strong dependence on the field-strength
ratio q, the time-frequency spectra of the dipole acceleration
are q dependent as well.

Population transfer between the adiabatic states, and con-
sequently the HHG spectra, can be modulated by the addition
of a control field with a low frequency to the fundamental
one. For direct insight into the influence of the field-strength
ratio on the HHG process, we present the temporal profiles of
harmonics near the cutoff region for two cases, (a) q = 0.5
and (b) q = 0.8 with fixed relative phase φ = 0, by using the
wavelet time-frequency analysis of the dipole acceleration in
Fig. 5. The time profile of harmonics presented in Fig. 5(a) is
from order 210ω0 to order 250ω0, and Fig. 5(b) is from order
310ω0 to 390ω0. In both cases, the time profiles exhibit steep
peaks when the adiabatic energies reach their peak values,
which contribute mainly to the HHG in the field. In addition,

053806-5



YANG, XIE, CHEN, HUANG, AND LEE PHYSICAL REVIEW A 93, 053806 (2016)

0 1 2 3
−0.5

0

0.5

t/T0

a(
t)

(a
rb

.
un

it
s)

(a)
0 1 2 3

−1

−0.5

0

0.5

1

t/T0

a(
t)

(a
rb

.
un

it
s)

(b)

w
av

e
or

de
r

ω
/ω

0

t/T00 1 2 3

50

100

150

200

250

1

2

3

4

(c)

w
av

e
or

de
r

ω
/ω

0

t/T00 1 2 3
0

100

200

300

400

1

2

3

4

5

6

7(d)

FIG. 4. (a),(b) Time evolution of dipole accelerations for different cases, i.e., (a) q = 0.5 and (b) q = 0.8. (c),(d) Wavelet time-frequency
profiles of HHG power spectra of the Gaussian bichromatic pulse laser for (c) q = 0.5 and (d) q = 0.8. Values of other parameters are chosen
the same as in Fig. 2(a) except for φ = 0.

one finds that the peak intensity as well as the width of the
harmonic profile becomes small as the order of harmonics
increases. In addition, the main inner peak profile gradually
gets wide and weak and splits into two peaks as the order of
harmonics decreases. The physical interpretation of these fea-
tures is rather clear. As the harmonics deviate from the cutoff
energies and decrease, the avoided level crossings between
two adiabatic states occur at two possible times (a shorter
and a longer one) induced by quantum interference between
two different paths, and thus two harmonic peaks occur. This
picture is related to the level crossings and avoided level
crossings induced by population transfers between adiabatic
states.

As illustrated in Figs. 3–5, for a fixed relative phase φ = 0,
we have illustrated that the HHG spectra exhibit several

well-formed individual peak structures in the cutoff region,
which correspond to single-peak harmonic shapes and can,
in principle, be controlled to produce a stronger radiation
emission via modulation of the field-strength ratio q. The main
contribution to the highest harmonic generation is the maxi-
mal energy difference ε+ − ε−, which is dependent on the
field-strength ratio. We have shown in Fig. 2 that the spectra
of the enhanced field and the HHG can also be modulated
by the relative phase φ between the fundamental field and
the low-frequency control field. For φ = π/2, Eqs. (6) and (7)
imply that there exist different values of avoided level-crossing
times t2M and level-crossing times t1 as in the case of φ = 0.
In order to facilitate exploration of the underlying mechanism
responsible for the HHG modified by the relative phase φ, we
present in Fig. 6(a) the adiabatic states as functions of time with
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are shown. Other parameters are the same as in Fig. 4.
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FIG. 6. (a) Adiabatic energies (given in units of the maximal energy εM
± ) ε+ (upward line) and ε− (downward line) of the adiabatic states

|0〉A and |1〉A, where thin and thick lines correspond to q = 0.5 and q = 0.8, respectively. (b) Populations |d0(t)|2 (upward line) and |d1(t)|2
(downward line) of the corresponding adiabatic states with respect to (a). (c),(d) Wavelet time-frequency profiles of HHG power spectra of the
Gaussian bichromatic pulse laser for (c) q = 0.5 and (d) q = 0.8, respectively. Values of other parameters are chosen the same as in Fig. 3
except for φ = π/2.

φ = π/2, for q = 0.5 (thin lines) and q = 0.8 (thick lines).
The comparison between the results for φ = 0 and φ = π/2
shows that level crossings and avoided level crossings, as well
as the maximal adiabatic energies, show a tiny dependence
on the relative phase φ. Compared with the results for φ = 0,
one finds that the avoided level-crossing times corresponding
to the maximal energies shift slightly in the case of φ = π/2,
i.e., t2M ≈ 1.54T0 for q = 0.5 and t2M ≈ 1.58T0 for q = 0.8,
which can be directly confirmed by Eq. (6). In addition, this
figure shows that the maximal adiabatic energies for φ = π/2
are slightly lower than the ones for φ = 0. In order to examine
how the changes in the adiabatic-state energies induced by
varying relative phases φ modify the HHG process, as in the
previous discussion for φ = 0, we present the analysis of the
time-dependent adiabatic-state population and time-frequency
spectra for φ = π/2. As shown in Fig. 6(b), the changes
in the avoided level crossings at t2M predicted by Eq. (6)
yield to the shifts in the maximal adiabatic energies. We now
investigate the cutoff and plateau harmonics, obtained from
the wavelet transform of the induced dipole acceleration in
Eq. (5), for different field-strength ratios q with φ = π/2. In
comparison to the situation where φ = 0, Figs. 6(c) and 6(d)
show that the main peaks for the highest harmonics are slightly
lower than the ones shown in Figs. 4(c) and 4(d). In other
words, the maximal adiabatic energies, and consequently the
HHG spectra, are insensitive to the relative phase between
the fundamental and the additional low-frequency control
pulses.

Interestingly enough, the plasmonic enhanced field spectra
and adiabatic energies, and consequently the HHG process,

will exhibit completely different situations when the bichro-
matic field is synthesized by a fundamental pulse and an
additional high-frequency control pulse. Without any loss of
generality, we use the following bichromatic pulse with the
electric field:

E(t) = E0f (t) sin[ω0(t − 2T0)]

+ qE0f (t) sin[2ω0(t − 2T0) + φ]. (11)

As an example, at a fixed field-strength ratio q = 0.5, we study
the plasmonic field enhancement and time evolution of the
adiabatic energies, as well as the HHG spectra, for φ = 0 and
φ = π/2. The corresponding plasmonic field enhancement
spectra of the MNP for different relative phases (i.e., φ = 0
and φ = π/2) are shown in Fig. 7(a). Differently from the
results for the case with an additional low-frequency pulse in
the spectra shown in Fig. 2(a), the relative phase obviously
plays an important role in plasmonic field enhancement
in the case of an additional high-frequency control pulse.
Furthermore, the field-dependent adiabatic energies, as well
as the level-crossing times and avoided level-crossing times,
also depend significantly on the relative phase. As illustrated in
Fig. 7(b), a relatively weak high-frequency wave considerable
distorts the level crossings and, consequently, the maxima of
the adiabatic energies in the case of φ = π/2. In order to
examine how the distortions of the adiabatic energies resulting
from varying relative phases φ modify the HHG process, we
present a time-frequency analysis of the HHG spectra, as
shown in Figs. 7(c) and 7(d). In comparison to the case of
φ = 0, one finds that the spectral peak splits and occurs at

053806-7



YANG, XIE, CHEN, HUANG, AND LEE PHYSICAL REVIEW A 93, 053806 (2016)

0 1 2 3
−1

0

1

t/T0

E
(t

)
(a

rb
.

un
it

s)

(a)
0 1 2 3

−5

0

5

E
S
Q

D
(t

)
(a

rb
.

un
it

s)

0 1 2 3
−5

0

5

t/T0

±
/

M ±

(b)

w
av

e
or

de
r

ω
/ω

0

t/T0

(c)

0 1 2 3

50

100

150

200

250

300

1

2

3

4

w
av

e
or

de
r

ω
/ω

0

t/T0

(d)

0 1 2 3

50

100

150

200

250

300

1

2

3

4

FIG. 7. (a) Field enhancement of an MNP on an incident Gaussian-shaped bichromatic pulse for different relative phases φ, i.e., φ = 0
(dashed line) and φ = π/2 (dotted line). (b) Adiabatic energies (given in units of the maximal energy εM

± ) ε+ (upward line) and ε− (downward
line) of the adiabatic states |0〉A and |1〉A, i.e., φ = 0 (dashed line) and φ = π/2 (dotted line). (c),(d) Wavelet time-frequency profiles of HHG
power spectra of the Gaussian bichromatic pulse laser for (c) φ = 0 and (d) φ = π/2, respectively. Values of other parameters are chosen the
same as in Fig. 3 except for q = 0.5.

two times, t2M ≈ T0 and 2T0 for φ = π/2, which agrees with
the prediction in Ref. [16]. These phenomena are intuitively
traceable in the splitting of the maximal values of the adiabatic
energies in the case of φ = π/2.

As illustrated in Fig. 2(b), we find that the harmonic spectra
exhibit several well-formed individual peak structures near the
cutoff region for φ = 0, which corresponds to the single-peak
harmonic shapes and can, in principle, be superimposed on
each other to produce a stronger radiation emission. As an
example, we show in Fig. 8(a) the harmonic spectra with a
fixed relative phase φ = 0 for different field-strength ratios
q, i.e., q = 0.5 (solid line) and q = 0.8 (dashed line). One
can clearly see that a smooth supercontinuum is generated
though the plateau to the cutoff for both cases, q = 0.5

and q = 0.8, which implies that an ultrashort XUV pulse is
available. In Fig. 8(b), we present the temporal profiles of the
corresponding ultrashort XUV pulses. The ultrashort XUV
pulses are obtained by synthesizing the supercontinuum from
140ω0 to 230ω0 and from 250ω0 to 340ω0 for the cases of
q = 0.5 and q = 0.8, respectively. As shown in Fig. 8(b),
single ultrashort XUV pulses are obtained in both cases. The
durations of the pulses corresponding to these two cases are
about 2.98 and 2.48 fs, respectively. Moreover, this figure
also shows that the intensity of the isolated ultrashort XUV
pulses increases as the field-strength ratio q increases, which is
related to the population transfers and acceleration properties
in the few-cycle bichromatic field. Such isolated ultrashort
XUV pulses are beneficial for detecting and controlling the
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in Fig. 3.
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ultrafast dynamics induced by the electric field rather than
the intensity profile. Besides, the bichromatic plasmonic near
fields for single ultrashort XUV pulse generation, which are
generated when an MNP is subjected to a moderate-intensity
(< 1012 W/cm2) bichromatic few-cycle pulse, is more easily
available than the complex and expensive femtosecond laser
amplifier systems.

As the main contribution to the highest harmonic generation
is the maximal energy difference between the adiabatic states
|0〉A and |1〉A, we have shown that a plasmonic enhanced
bichromatic field in an MNP can be used to enhance the
adiabatic energies and, consequently, modify the HHG process
via variation of the field-strength ratio and the relative phase
between the fundamental and the control pulses. Instead of a
single MNP, for a more realistic case, we should study HHG
utilizing plasmonic enhanced fields in an ordered array of
MNPs. In the ordered array of gold MNPs, each spherical
MNP has radius a = 7.5 nm and the center-to-center distance
between two MNPs is 19 nm (i.e., the gap size is 4 nm). In our
simulation, the bichromatic few-cycle pulse is synthesized by
a fundamental pulse and a control pulse with the same electric
field from Eq. (1). The incident bichromatic few-cycle pulse
propagates along the y axis with polarization along the z axis.
The contour plot of the enhanced fields between the MNPs
considering this ordered MNP array is shown in Fig. 9(a).
In this figure, one can see that the maximal enhancement
of the field is located in the gap of the x-z plane, and the
enhancement of the field is lower along the y axis. We consider
that the SQD is along the y axis and located above the center
of the gap in the x-z plane, with the distance between the SQD
and the center of the adjacent MNP R = 11 nm. The cor-
responding plasmonic field enhancement spectra of the MNP
for different field-strength ratios (i.e., q = 0, q = 0.5, and q =
0.8) and different relative phases (i.e., φ = 0 and φ = π/2) are
shown in Fig. 9(b). We may compare the field enhancement
factor of the MNP array with that of a single MNP shown
in Fig. 2(a). The maximal field enhancement exceeds 15 for
q = 0.8 and φ = 0 at the location of the SQD and is higher
towards the x-z plane. In addition, Fig. 9(b) also shows that
the field-strength ratio and relative phase have an influence on

the field enhancement similar to that of the single MNP case
shown Fig. 2(a). The field enhancement factor increases as the
field-strength ratio increases from 0.5 to 0.8 and the location
of the center peaks of the enhanced fields shifts slightly as the
relative phase changes from 0 to π/2. Since the maximal field
enhancement exceeds 15 in an ordered array of MNPs and is
much higher than the maximal enhancement in the single-MNP
case, one can expect that the cutoff energies of HHG can be
extended in comparison to the case with a single MNP.

IV. CONCLUSION

In conclusion, we have theoretically investigated high-
order-harmonic generation in a semiconductor quantum dot
and metallic nanoparticle complex driven by a moderate-
intensity (<1012 W/cm2) bichromatic few-cycle pulse.
Bichromatic plasmonic near fields, which depend on temporal
waveform synthesis, are generated. Our numerical results illus-
trate that modulating the field-strength ratio and modulating
the relative phase between the fundamental and the control
fields are efficient methods for controlling HHG spectra and
are capable of generating broader supercontinuum XUV pulse
harmonics with higher cutoff orders. Differently from our
previous work [43], where HHG spectra were controlled via
modulation of the interparticle distance between the SQD and
the MNP, here these new degrees of freedom (the field-strength
ratio and relative phase) could lead to an enhancement in the
harmonic spectra to the XUV regime. By using the two-level
atom as a simplified model, HHG modified by the field-
strength ratio and relative phase can be successfully explained
in adiabatic-state transition. Furthermore, we conducted the
time-frequency analysis by using the wavelet transform of the
induced dipole acceleration and found that the time-frequency
spectra are proportional to the energies of the adiabatic
states. As a matter a fact, this feature is a consequence
of the enhanced bichromatic plasmonic near fields, which
substantially modify the adiabatic-state transition via the
field-strength ratio and relative phase. More interestingly, by
choosing a suitable time profile of the incident bichromatic
pulse, the temporal harmonic profile can be superimposed,
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i.e., ultrabroad supercontinuum harmonic spectra will be
generated and isolated ultrashort XUV pulses can be obtained.
In addition, the plasmonic field enhancement in a realistic
ordered array of gold nanoparticles is discussed qualitatively.
In this case, the maximal field enhancement exceeds 15 in an
ordered array of MNPs, and thus one can expect that the cutoff
energies of HHG can be extended in comparison to the case
with a single MNP.
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