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Phase-space representation of a non-Hermitian system with PT symmetry
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We present a phase-space study of a non-Hermitian Hamiltonian with PT symmetry based on the Wigner
distribution function. For an arbitrary complex potential, we derive a generalized continuity equation for the
Wigner function flow and calculate the related circulation values. Studying the vicinity of an exceptional point,
we show that a PT -symmetric phase transition from an unbroken PT -symmetry phase to a broken one is a
second-order phase transition.
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I. INTRODUCTION

With spatial reflection and time reversal, parity-time (PT )
symmetry has a special place in studies of non-Hermitian
operators, as it reveals the possibility to remove the re-
striction of Hermiticity from Hamiltonians. A PT -symmetry
Hamiltonian can exhibit entirely real and positive eigenvalue
spectra [1–3]. Even though the attempt to construct a complex
extension of quantum mechanics was ruled out for violating the
no-signaling principle when applying the localPT -symmetric
operation on one of the entangled particles [4], such a class
of non-Hermitian systems are useful as an interesting model
for open systems in the classical limit. Through the equiv-
alence between quantum-mechanical Schrödinger equations
and optical wave equations, with the introduction of a complex
potential, PT -symmetric optical systems demonstrate many
unique features. In PT -symmetric optics, wave dynamics is
not only modified in the linear systems, such as synthetic
optical lattices [5,6] and waveguide couplers [7,8], but also in
the nonlinear systems [9].

A Hamiltonian Ĥ is PT symmetric if it commutes with the
P̂T̂ operator, [P̂T̂ ,Ĥ ] = 0. Here, P̂ is the spatial reflection
operator that takes x → −x, while T̂ is the time-reversal an-
tilinear operator that takes i → −i. One can easily check that
the eigenvalues of Ĥ are always real when the eigenstates of
a PT -symmetric Hamiltonian are also the eigenstates of P̂T̂ .
It is also known that there exist spontaneous PT symmetry-
breaking points, where the eigenstates of Ĥ are no longer the
eigenstates of P̂T̂ . Depending on the PT symmetry-breaking
condition, eigenvalues of a PT -symmetric operator are either
real or complex conjugate pairs. The former scenario is called
the unbroken PT -symmetry phase, while the latter one is
known as the broken phase. The transition point from an
unbroken to a broken PT -symmetry phase is coined the
exceptional point (EP). By steering the system in the vicinity
of an EP, loss-induced suppression of lasing [10] and stable
single-mode operation with the selective whispering-gallery
mode [11] are implemented with state-of-the-art fabrication
technologies.

A natural question arises about the existence of these
exceptional points and the relevant order of phase transitions.
In this work, we present a phase-space study showing how the
symmetry breaking manifests in systems governed by non-
Hermitian PT -symmetric Hamiltonians using an example

of generalized quantum harmonic oscillators. Even though—
from a physicist point of view—only operators with purely real
eigenvalues are the observables, an eigenvalue with a nonzero
imaginary part cannot be interpreted as a result of measure-
ment. For a PT -symmetric Hamiltonian, nonreal eigenvalues
always appear in complex conjugate pairs ensuring conserva-
tion of energy in the system. It distinguishes PT -symmetry
operators from other non-Hermitian operators, making the
class especially interesting. With the introduction of Wigner
function flow, we derive the corresponding continuity equa-
tion. Moreover, through the Gauss-Ostrogradsky theorem, we
show that the phase transition in the vicinity of EP, i.e., from an
unbrokenPT -symmetry phase to a broken one, is a continuous
function of the system parameter, which indicates that a PT -
symmetric phase transition is a second-order phase transition.

II. MODEL HAMILTONIAN FOR PT -SYMMETRY
SYSTEMS

From a quantum-mechanical perspective, operators with
complex eigenvalues cannot be related to observables, thus,
a notion of a non-Hermitian Hamiltonian has no place in or-
thodox quantum theory. Nevertheless, an idea of releasing the
Hermiticity requirement for Hamiltonians appears repeatedly
in literature [1–3,12,13], under justification that there exist
non-Hermitian operators with purely real spectra. However,
proofs of spectra reality are definitely nontrivial; usually even
finding the domain on which an operator acts can lead to
serious difficulties, which is often ignored when considering
the non-Hermitian Hamiltonians [14]. In the following, in
order to maintain some level of formal rigor and mathematical
correctness, we shall talk about finding solutions of differential
equations rather than extending quantum mechanics to non-
Hermitian systems.

Here, we consider a family of differential equations
parametrized by a continuous parameter ε > 0 of the form

∂2ψ(x)

∂x2
− Vε(x)ψ(x) + 2Eψ(x) = 0, (1)

where E is the corresponding eigenenergy, x denotes a real
variable, and ψ(x) is a square integrable function. This
stationary Schrödinger wave equation is introduced as a
PT -symmetry system from a generalized quantum harmonic
oscillator [1]. Unlike in the case of traditional quantum
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mechanics, we allow the potential function, i.e., Vε(x) shown
in Eq. (1), to take on complex values. Here, let us specify
the definition of Vε(x) := −(ix)ε , by stating explicitly which
branch of logarithm will be used in this paper:

Vε(x) = −(ix)ε = e−ε ln(ix)

=
⎧⎨⎩−|x|ε[ cos

(
ε π

2

) + i sin
(
ε π

2

)]
for x > 0

0 for x = 0;
−|x|ε[ cos

(
ε π

2

) − i sin
(
ε π

2

)]
for x < 0.

(2)

It is easy to notice that for ε = 2 this potential reduces
Eq. (1) to the Schrödinger equation of a quantum harmonic
oscillator expressed in the units m = 1, � = 1, ω = 1. In this
special case, solutions are given by Fock (number) states,
denoted in the Dirac notation by kets |n〉, |m〉, etc. The
corresponding eigenfunction of the nth excited state of a

quantum harmonic oscillator in the position representation
reads

un(x) = 〈x|n〉 = 1√
2nn!

√
π

Hn(x)e−x2/2, (3)

where Hn(x) is the nth-order Hermite polynomial. The
corresponding eigenvalues are equal to En = n + 1/2 , for any
n ∈ N. We are interested in finding pairs (ψn,En)ε fulfilling
Eq. (1) for a set ε > 0.

To find the solutions of the eigenvalue problem with
the complex potential, we use connection with a quantum
harmonic oscillator and solve Eq. (1) in the Fock state basis.
It turns out that an analytical formula for the matrix element
anm(ε) = 〈m|Hε |n〉 of Hε = − 1

2
∂2

∂x2 + Vε (x)
2 can be constructed

for any natural number n, m, and positive ε. It reads

anm(ε) =
√

n(n − 1)

4
δm,n−2+

√
(n + 1)(n + 2)

4
δm,n+2 − 2n + 1

4
δm,n+

[
1 − (−1)̃n+m̃

4
cos

(
ε
π

2

)
+ 1 + (−1)̃n+m̃

4
i sin

(
ε
π

2

)]
× (−1)�n/2�+�m/2�2ñ+m̃n!m!⌊

n
2

⌋
!
⌊
m
2

⌋
!

�

(
1 + ε + ñ + m̃

2

)
FA

(
1 + ε + ñ + m̃

2
; −

⌊n

2

⌋
,−

⌊m

2

⌋
;

2̃n + 1

2
,
2m̃ + 1

2
; 1,1

)
δm,n, (4)

where � is an Euler gamma function, FA is a Lauricella
hypergeometric function, symbol � � denotes a floor function,
�k� is the largest integer not greater than k, character tilde ˜
denotes a binary parity function, and k̃ is 0 for an even k and 1
for an odd k. All mathematical formulas needed for derivation
of Eq. (4) are presented in the Appendix.

In the analytical expression shown in Eq. (4), the
first line comes from the well-known formula 2 ∂2

∂x2 |n〉 =√
n(n − 1) |n − 2〉 − (2n + 1)|n〉 + √

(n + 1)(n + 2) |n + 2〉,
while the next lines are a combination of parity
coefficients and an Erdèlyi formula for the integral∫ ∞

0 e−λx2
Hμ1(β1x)Hμ2(β2x) · · · Hμn

(βnx)xνdx [15]. Let us
note that crucial to the derivation are the parity properties of
Hermite polynomials, e.g., the fact that∫ 0

−∞
e−x2

Hn(x)Hm(x)|x|εdx

= (−1)̃n+m̃

∫ ∞

0
e−x2

Hn(x)Hm(x)|x|εdx. (5)

Whenever n and m have the same parity, the values of
anm(ε), Eq. (4), are real. Otherwise, values anm(ε) are purely
imaginary. Unless ε is an even number, matrix Mnn(ε)
constructed from elements anm(ε) is symmetric (M = MT)
but non-Hermitian. Numerical diagonalization of Mnn(ε), and
hence a necessity to truncate the Hilbert space to a finite basis,
sets some formal limitation on the generality of the results.
On the other hand, the method allows for a direct control of
precision: truncating basis at nmax we automatically know that
eigenfunctions are expanded into a polynomial of the order
nmax, as

ψj (x,t) =
nmax∑
k=0

ajkuk(x)e−iEkt/�.

However, one has to realize that, as long as a finite basis is used,
diagonalization of Mnn(ε) always leads to discrete spectra. In
the general case of a nontruncated basis, there is no way to
determine a priori if the spectrum is discrete or even if there
exists a square integrable solution of Eq. (1).

Using the matrix elements derived in Eq. (4), we diagonal-
ize the matrix Mnn(ε) numerically, having truncated the Fock
basis to the first 31, 51, or 71 elements. For low energy states,
already the smallest basis of 31 elements gives more than
sufficient accuracy. In Fig. 1, we show real eigenvalues of the
energy spectrum corresponding to the generalized quantum
harmonic oscillator described in Eq. (1). The parameter ε

from Eq. (2) is used as a variable. One can see that for
ε < 2 the number of real eigenvalues decreases. When ε = 1,
only the ground state has a real energy, while for parameter
1 < ε < 2, the lowest eigenvalues of (1) are real, whereas
higher eigenvalues might appear in complex conjugate pairs.
It was conjured that for ε � 2 eigenvalues of Eq. (1) are always
real; however, there is no analytical proof of this statement and
although some numerical simulations support the conjecture,
others are inconclusive [1]. In the following, we focus us on the
EP for the first- and second-excited states at εEP ≈ 1.422 07,
as indicated by the red vertical line in Fig. 1. At this EP, two
subsequent (up to that point) real eigenvalues start to have the
same absolute value but complex conjugate imaginary parts.
It is a point at which solutions that break the symmetry of
the Hamiltonian suddenly appear. In the next section, we will
examine the phase-space representation of such eigenfunctions
and look for a signature of this exceptional point.

III. PT SYMMETRY IN WIGNER FUNCTION
REPRESENTATION

Phase-space wave characteristics of a square-integrable
wave function ψ(x,t) is often examined through the
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FIG. 1. Real eigenvalues from the energy spectrum for the
generalized quantum harmonic oscillator from Eqs. (1) and (2),
generated as a function of the parameter ε. The red vertical line
indicates the EP at ε ≈ 1.422 07, where two branches from the first-
and second-excited states marked in red merge together.

corresponding Wigner distribution [16,17], defined as an
integral

Wψ = Wψ (x,p,t) := 1

2π�

∫
ψ∗(x + ξ/2,t)

×ψ(x − ξ/2,t) eiξp/� dξ, (6)

where ψ∗ denotes a complex conjugate of ψ . The Wigner
function is always real. It is also normalized to 1 for
any normalized ψ , but in contrast to proper probability
distributions it might take on negative values. The Wigner
representation reflects proper probability properties in position

and momentum representations simultaneously, and thus is
very well suited to reveal the possible symmetries in wave
functions [17,18].

In Fig. 2, the Wigner function corresponding to the first- and
second-exited states of Eq. (1) with a PT -symmetric potential
given in Eq. (2) are plotted for ε = 2.0, 1.5, and 1.4, respec-
tively. We start with the case of a quantum harmonic oscillator
(ε = 2), which has all eigenvalues real and the corresponding
Wigner functions have a cylindrical symmetry, as shown in
Figs. 2(a) and 2(d). The Wigner function of a harmonic
oscillator depends on r =

√
x2 + p2 as an nth-order Laguerre

polynomial suppressed by an exponential factor. When ε �= 2,
such a cylindrical symmetry vanishes. It is noted from Fig. 1
that the exceptional point for these two states happens at εEP ≈
1.422 07. Within the unbroken PT -symmetry phase, ε > εEP,
we have the real eigenvalues and the corresponding Wigner
functions are symmetric under transformation x → −x, as
shown in Figs. 2(b) and 2(e) for the first and second exited
states, respectively. However, at the same time, the symmetry
p → −p that is present in a quantum harmonic oscillator case
disappears. Moreover, as expected, the bigger the difference
between the value of ε and 2, the lesser a similarity of Wigner
distributions to those of a quantum harmonic oscillator is
exhibited.

When the PT symmetry is broken for ε < εEP, the
corresponding eigenvalues for both the first and second exited
states not only have nonzero imaginary parts, but also form a
complex conjugate pair to each other. In Figs. 2(c) and 2(f), we
plot the Wigner function distributions in such aPT -symmetry-
broken phase. As one can see, neither symmetry p → −p nor
x → −x is valid. However, this pair of eigenfunctions with
the complex conjugates in their eigenvalues are mirror images
to each other, with respect to x = 0. The same mirror-image
symmetry holds for any pair of eigenfunctions that have
complex conjugate eigenvalues.
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FIG. 2. Wigner function distributions for the (upper panel) first- and (lower panel) second-excited states, at (a) ε = 2.0, (b) ε = 1.5, and
(c) ε = 1.4. It is noted that the exceptional point appears at εEP ≈ 1.422 07.
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In addition to the Wigner function distribution in the phase
space, we also introduce a Wigner function flow J̄ψ defining
the field J̄ψ = (Jx,Jp) as

Jx = p

m
Wψ, (7)

Jp = −
∞∑

j=1

(−i�)j−1

j !2j

[
djV ∗

dxj
+ (−1)j−1 djV

dxj

]
∂j−1Wψ

∂pj−1
,

(8)

where V denotes a potential from the Schrödinger equation
that led to eigenfunction ψ , and V ∗ is its complex conjugate.
In general, a continuity equation is given by

∂Wψ

∂t
+ ∂Jx

∂x
+ ∂Jp

∂p
= i

�

(
V ∗ − V

)
Wψ. (9)

In the Hermitian case, the right-hand side of Eq. (9) vanishes
and in the classical limit of � → 0 it is reduced to

∂Wψ

∂t
+ p

m

∂Wψ

∂x
− ∂V

∂x

∂Wψ

∂p
= 0. (10)

This well-known formula determines the classical evolution of
the Wigner function. It was first derived by Wigner [16] and
later discussed, e.g., by Wyatt [19]. An analogous equation
valid when V ∗ �= V reads

∂Wψ

∂t
+ p

m

∂Wψ

∂x
− ∂ Re(V )

∂x

∂Wψ

∂p
= 2Wψ lim

�→0

Im(V )

�
, (11)

where Re(V ) and Im(V ) represent the real and imaginary parts
of V , respectively. Unless the imaginary part of the potential
is proportional to �, the right-hand side in Eq. (11) explodes
when � → 0. If there is no finite limit lim�→0

ImV
�

, we infer

from the Bohr rule that there is no classical system governed
by a Hamiltonian p2

2m
+ V .

There is an underlying assumption in the formulation of
Eq. (8) that at every point x potential V (x) can be expanded
into a power series with an infinite radius of convergence.
When it is not the case, the relation shown in Eq. (9) still
holds, but one needs to calculate Jp as a full integral:

Jp =
∫

dξ

2πi
eiξp/�ψ∗

(
x + ξ

2

)
ψ

(
x − ξ

2

)

×
[
V

(
x − ξ

2

) − V (x)

ξ
− V ∗(x + ξ

2

) − V ∗(x)

ξ

]
. (12)

Here, both
V(x− ξ

2 )−V(x)
ξ

and
V(x+ ξ

2 )−V(x)
ξ

have finite values in
a limit of ξ → 0, which means that Jp in Eq. (12) is a
well-defined continuous function on (x,p). Defined by Eqs. (7)
and (12), Wigner function flow is a generalization of formulas
used to study phase-space dynamics in Wigner representation
[18–21] to the case of complex potential. Similarly, the
continuity equation for the Wigner distribution shown in
Eq. (9), along with the definition in Eq. (12), can be applied
to an arbitrary complex potential, which is not necessarily
Hermitian or a PT -symmetric one.

For the convenience of notation, from now on we set
� = 1. We calculate the Wigner function flow J̄ψ for the
eigenstates of Eq. (1) using a potential V = Vε (x)

2 defined in
Eq. (2). In Fig. 3, the streamline plots of J̄ψ corresponding
to the first- and second-excited states are depicted, again for
ε = 2.0, 1.5, and 1.4, respectively. In the figures, the Wigner
distribution is plotted as the background. The color of the

arrows depends on the norm NJ =
√

J 2
x + J 2

p , varying from

white (for N
J

= 0) to a dark color (for large NJ ). As illustrated
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FIG. 3. Wigner function currents for the (upper panel) first- and (lower panel) second-excited states, at (a) ε = 2.0, (b) ε = 1.5, and
(c) ε = 1.4. Here, arrows denote the direction of J̄ ψ , while the color of the arrows depends on the norm N

J
with dark gray denoting the

highest value. Again, the exceptional point happens at εEP ≈ 1.422 07. Note that depending on the sign of Wigner function, the rotation may
be clockwise or counterclockwise. Insects show the corresponding Wigner function distributions.

042122-4



PHASE-SPACE REPRESENTATION OF A NON-HERMITIAN . . . PHYSICAL REVIEW A 93, 042122 (2016)

in Figs. 3(a) and 3(d), streamlines corresponding to the
harmonic oscillator form perfect circles. The streamlines rotate
clockwise or counterclockwise, depending on the sign of the
Wigner function. In general, the sign of Jx depends on the sign
of the Wigner function and momentum: sgn(Jx) = sgn(pWψ ),
and J̄ψ vanishes at the points where the Wigner function
vanishes.

As demonstrated in Fig. 3, for ε < 2 the streamlines are
no longer perfect circles. However, the deformation in the
streamlines just reflects changes in the Wigner function, but
the characteristics of the field are not alerted qualitatively. As
long as the PT symmetry is unbroken, these streamlines still
form closed loops and their orientation depends on the sign
of the Wigner distribution [see Figs. 3(b) and 3(e)]. However,
when the PT symmetry is broken, as shown in Figs. 3(c) and
3(f), a quantitative difference will be revealed for these Wigner
function currents by the means of the Gauss-Ostrogradsky
theorem.

IV. WIGNER FUNCTION FLOW AT
THE EXCEPTIONAL POINTS

The divergence theorem, i.e., the Gauss-Ostrogradsky
theorem, states that the flux of a vector field through a closed
surface is equal to the volume integral of the divergence
over the region inside the surface [22,23]. It allows us to
calculate the flux through volume or surface integrals and
quantitatively distinguishes cases of unbroken and broken PT
symmetry. To apply the divergence theorem, we introduce a
three-dimensional (3D) field J3 := (Wψ,Jx,Jp), and rewrite
the continuity equation for the Wigner function in Eq. (9) by
this 3D field. In this notation, Eq. (9) is expressed simply as

∇ · J3 = 2Wψ ImV.

From the divergence theorem we infer that a flux ψJ3 of
the field J3 through a surface S enclosing volume U can be
calculated by taking a volume integral of 2W ImV over U :

ψJ3 =
�
S

J3dS =
∫∫

U

∫
(∇ · J3)dt dx dp

= 2
∫∫

U

∫
ImV W dt dx dp. (13)

From Eq. (13), it is clear that the flux ψJ3 = 0 when the
imaginary part of V vanishes. It follows that the flux ψJ3

vanishes for all Hermitian Hamiltonians.
Whenever the Wigner function does not depend on time,

i.e., ∂W(x,p,t)
∂t

= 0, a flux ψJ3 of the field J3 through a surface
S for a unit time can be calculated as a two-dimensional (2D)
integral

�
2W Im(V )dx dp. Here, a product of the Wigner

distribution and the imaginary part of potential V , can be
viewed as a probability density determining behavior of a
field J3. Note that as long as V is antisymmetric under the
transformation x → −x, the corresponding value of WIm(V )
is zero whenever the Wigner function is symmetric under
the same transformation. It also shows that a flux ψJ3 is
nonzero only under the presence of a non-Hermitian part of the
Hamiltonian and only when aPT symmetry of a given solution
is broken. This fact provides a quantitative measure, which

FIG. 4. The circulation value, i.e., the integral calculated by
Eq. (14) for the Wigner function flow from the first-excited state
as a function of the parameter ε. Markers in circles denote numerical
values. Here, the exceptional point happens at εEP ≈ 1.422 07. One
can see that integral is equal to zero when ε � εEP. The inset shows
the enlarged area in the vicinity of the exception point.

allows us to distinguish the cases of broken and unbroken PT
symmetry.

Alternatively, instead of treating time parameter t as a third
dimension, one can also stay in the 2D case by defining an
auxiliary field I2 = (−Jp,Jx). Now, let us consider a surface
D that has a boundary C = ∂D. In 2D, the circulation of a field
I2 along a curve C can be calculated as an area integral over D.
Again, from the divergence theorem we know that a circulation
from the field ψI2 of the field I2 along C can be calculated as
a two-dimensional area integral of Im(V )W(x,p,t) − ∂W(x,p,t)

∂t

over D, or equivalently:

∮
C

I2 dC =
∫∫

D

(
∂Ix

∂p
− ∂Ip

∂x

)
dx dp

=
∫∫

D

(
2W ImV − ∂W

∂t

)
dx dp. (14)

Figure 4 shows the circulation value, the integral from
Eq. (14) versus the parameter ε for the first-excited state of
our modal system with PT symmetry in Eqs. (1) and (2).
Here, the curve C encircles the area D, which is taken large
enough to ensure that the integral value does not change for any
more expansion. One can find that when ε � εEP ≈ 1.422 07,
the circulation value is always zero, no matter what the
symmetry in the Wigner function distribution sustains shown
in Fig. 2. However, across this exceptional point, εEP, the
circulation value has a nonzero term, which reflects a broken
PT -symmetry phase. Moreover, we check this circulation
value in the vicinity of εEP to the tenth decimal place, as
shown in the inset of Fig. 4. With this numerical check, we can
confirm that the phase transition in our PT -symmetric system
is a continuous function of the parameter ε, which implies a
second-order phase transition.
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V. CONCLUSIONS

We present a phase-space study of a non-Hermitian system
deriving a continuity equation for the Wigner distribution and
arbitrary complex potential, defining a Wigner function flow
accordingly. In particular, we reveal how a PT -symmetry
breaking manifests itself in the phase-space representation.
A quantitative measure on the circulation value for the Wigner
function flow shows that the phase transition in the vicinity
of the exceptional point (EP) is a continuous function of the

system parameter. Our study in phase-space representation
indicates that a PT -symmetric phase transition is a second-
order phase transition.
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APPENDIX

In this Appendix, we provide the formula for the Lauricella hypergeometric function shown in Eq. (4). With the basic properties
of Hermite polynomials, it is easy to check that

−2
∂2

∂x2
|n〉 = (2n + 1)|n〉 −

√
n(n − 1)|n − 2〉 −

√
(n + 1)(n + 2)|n + 2〉. (A1)

To calculate 〈m|Vε(x)|n〉 it is useful to note that depending on the parity of n and m,∫ 0

−∞
e−x2

Hm(x)Hn(x)|x|εdx = ±
∫ ∞

0
e−x2

Hm(x)Hn(x)|x|εdx.

Thus, for a given ε, the value of an integral∫
R

e−x2
Hm(x)Hn(x)Vε(x)dx =

∫ 0

−∞
e−x2

Hm(x)Hn(x)|x|ε
[

cos

(
π

2
ε

)
− i sin

(
π

2
ε

)]
dx

+
∫ ∞

0
e−x2

Hm(x)Hn(x)|x|ε
[

cos

(
π

2
ε

)
+ i sin

(
π

2
ε

)]
dx

is determined by an integral (A2) defined below.
It was shown by Erdèlyi [15] that

2
∫ ∞

0
e−x2

Hμ(x)Hν(x)xεdx = hμhν�

(
1 + ε

2
− (−1)μ + (−1)ν

4

)
×FA

(
1 + ε

2
− (−1)μ + (−1)ν

4
;
{μ} − μ

2
;
{ν} − ν

2
; 1 − (−1)μ

2
; 1 − (−1)ν

2
; 1,1

)
, (A2)

where �(·) is an Euler gamma function, FA(·) denotes a Lauricella hypergeometric function, and parameters hμ,hν are defined as

hμ =
{

(−1)μ/2μ!
[(

μ

2

)
!
]−1

for even μ

(−1)(μ+1)/22μ!
[(

μ−1
2

)
!
]−1

for odd μ.

For different parities of μ and ν one obtains∫ ∞

0
e−x2

H2r (x)H2s(x)xεdx = (−1)r+s(2r)!(2s)!

2r!s!
�

(
ε + 1

2

)
FA

(
ε + 1

2
; −r,−s;

1

2
,
1

2
; 1,1

)
, (A3)∫ ∞

0
e−x2

H2r (x)H2s+1(x) xεdx = (−1)r+s(2r)!(2s + 1)!

r!s!
�

(
ε + 2

2

)
FA

(
ε + 2

2
; −r,−s;

1

2
,
3

2
; 1,1

)
,∫ ∞

0
e−x2

H2r+1(x)H2s+1(x)xεdx = 2(−1)r+s(2r + 1)!(2s + 1)!

r!s!
�

(
ε + 3

2

)
FA

(
ε + 3

2
; −r,−s;

3

2
,
3

2
; 1,1

)
. (A4)

Relation (A2) is a special case of a more general formula for an integral
∫ ∞

0 e−λx2
Hμ1 (β1x)Hμ2 (β2x) · · · Hμn

(βnx)xνdx, which
we do not rewrite here because of its length. The Lauricella hypergeometric function is defined as

F
(n)
A (a; b1, . . . ,b2; c1, . . . ,cn; x1, . . . ,xn) =

∞∑
i1,...,in=0

(a)i1+···+in(b1)i1 · · · (bn)in
(c1)i1 · · · (cn)in in! · · · in!

x
i1
1 · · · xin

n (A5)

with ( · )k being a Pochhammer symbol, i.e., (a)k = a(a + 1) · · · (a + k − 1). In our case, n = 2 and FA(·) are of the form

FA

(
ε + 1

2
; −r,−s;

1

2
,
1

2
; 1,1

)
=

∞∑
i1,i2=0

(
ε+1

2

)
i1+i2 ( − r)i1 ( − s)i2( 1
2

)
i1

( 1
2

)
i2 i1!i2!

.
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Because r and s are natural numbers there will always be a finite number of terms in the sum as (−r)k = 0 for k � r + 1 so
∞∑

i1,i2=0

(
ε+1

2

)
i1+i2 (−r)i1 (−s)i2( 1

2

)
i1

( 1
2

)
i2 i1! i2!

=
r,s∑

i1,i2=0

(
ε+1

2

)
i1+i2 (−r)i1 (−s)i2( 1

2

)
i1

( 1
2

)
i2 i1! i2!

= 1 +
r∑

i1=1

(
ε+1

2

)
i1 (−r)i1( 1

2

)
i1 i1!

+
s∑

i2=1

(
ε+1

2

)
i2 (−s)i1( 1

2

)
i2 i2!

+
r,s∑

i1,i2=1

(
ε+1

2

)
i1+i2 (−r)i1 (−s)i2( 1

2

)
i1

( 1
2

)
i2 i1!i2!

.

We can use following formula:

(−r)k = (−r)(−r + 1) · · · (−r + k − 1) = (−1)kr(r − 1) · · · [r − (k − 1)] = (−1)kr!

(r − k)!
,

and rewrite
r∑

i1=1

(
ε+1

2

)
i1 (−r)i1( 1

2

)
i1 i1!

= r!
r∑

i1=1

(−1)i1
(

ε+1
2

)
i1( 1

2

)
i1 i1!(r − i1)!

= r!
r∑

i1=1

(−1)i1
∏i1

k=1(ε + 2k − 1)

(2i1 − 1)!!i1!(r − i1)!
, (A6)

where we use also the facts that (
1

2

)
n = (2n − 1)!!

2n

and (
ε + 1

2

)
n = (ε + 1)(ε + 3) · · · (ε + 2n − 1)

2n
= 1

2n

n∏
k=1

(ε + 2k − 1).

Similarly, we have
s∑

i2=1

(ε+1
2

)
i2 ( − s)i2( 1

2

)
i2 i2!

= s!
s∑

i1=1

(−1)i2
∏i2

k=1(ε + 2k − 1)

(2i2 − 1)!!i2!(r − i2)!
(A7)

and
r,s∑

i1,i2=1

(ε+1
2

)
i1+i2 (−r)i1 (−s)i2( 1

2

)
i1

( 1
2

)
i2 i1i2!

= s!
s∑

i1=1

(−1)i2
∏i2

k=1(ε + 2k − 1)

(2i2 − 1)!!i2!(r − i2)!
. (A8)

Combining Eqs. (A6)–(A8) we can rewrite FA(ε+1
2 ; −r,−s; 1

2 , 1
2 ; 1,1) in a convenient form of finite sums.

Using the facts that (
3

2

)
n

= (2n − 1)!!

2n+1
and

(
ε + 2

2

)
n

= (ε + 2)(ε + 4) · · · (ε + 2n)

2n
= 1

2n

n∏
k=1

(ε + 2k),

(
ε + 3

2

)
n

= (ε + 3)(ε + 5) · · · (ε + 2n + 1)

2n
= 1

2n

n∏
k=1

(ε + 2k + 1),

analog formulas for two other functions FA( ε+2
2 ; −r,−s; 1

2 , 3
2 ; 1,1) and FA( ε+3

2 ; −r,−s; 3
2 , 3

2 ; 1,1) are obtained. Together they
simplify the calculation of elements anm(ε), Eq. (4), considerably. In principle, finding these elements can be done by hand
without any aid of numerics.
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