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To effectively realize a PT -symmetric system, one can dilate a PT -symmetric Hamiltonian to some global
Hermitian one and simulate its evolution in the dilated Hermitian system. However, with only a global Hermitian
Hamiltonian, how do we know whether it is a dilation and is useful for simulation? To answer this question,
we consider the problem of how to extract the internal nonlocality in the Hermitian dilation. We unveil that
the internal nonlocality brings nontrivial correlations between the subsystems. By evaluating the correlations
with local measurements in three different pictures, the resulting different expectations of the Bell operator
reveal the distinction of the internal nonlocality. When the simulated PT -symmetric Hamiltonian approaches its
exceptional point, such a distinction tends to be most significant. Our results clearly make a distinction between
the Hermitian dilation and other global Hamiltonians without internal nonlocality. They also provide the figure
of merit to test the reliability of the simulation, as well as to verify a PT -symmetric (sub)system.

DOI: 10.1103/PhysRevA.104.012202

I. INTRODUCTION

Nowadays, both in classical and quantum physics, we are
witnessing a growing interest in discussing PT -symmetric
systems. Historically, parity-time (PT )-symmetric systems
were first introduced to permit entirely real spectra even
in the non-Hermitian setting [1]. With the experimental
controls in gain and loss, photonic systems have been
used to simulate PT -symmetric wave phenomena with an
equivalence between single-particle quantum mechanics and
classical wave equation [2–6]. Interestingly, PT -symmetry
has also found powerful applications in circuit design [7].
The concept of PT -symmetry was generalized to pseudo-
Hermiticity [8–11] and anti-PT -symmetry [12,13]. More-
over, PT -symmetric theory extended profoundly to the
research of non-Hermiticity, with fruitful results and novel
phenomena [14]. For example, in the field of dynamics and
band topology, the skin effect was introduced in the complex
spectra of non-Hermitian systems [15–18].

Despite the initial motivation to establish an alterna-
tive framework of quantum theory, we can also take
PT -symmetric systems as effective descriptions of large
Hermitian systems in some subspaces, similar to the Fes-
hbach formalism dealing with an effective description of
open quantum systems [19]. By using the Naimark dilation
theorem, one can always find some four-dimensional Her-
mitian Hamiltonians to effectively realize two-dimensional

*hmy@zstu.edu.cn
†rklee@ee.nthu.edu.tw
‡wjd@zju.edu.cn

unbroken PT -symmetric systems [20]. Then, such a method-
ology can be generalized to simulate any finite-dimensional
PT -symmetric systems [21,22]. By evolving states under
the Hermitian dilation Hamiltonians, and projecting out the
ancillary systems, this paradigm successfully simulates the
evolution of unbroken PT -symmetric Hamiltonians in sub-
spaces. It endows a direct physical meaning of PT -symmetric
quantum systems in the sense of open systems. As for
the broken PT -symmetry, there are at least two different
approaches to the simulation. One way is utilizing weak
measurement as an approximation paradigm for the broken
PT -symmetric systems [23], while the other way is simu-
lating the evolution of broken PT -symmetric systems with
time-dependent Hamiltonians, connecting the topology and
dynamics [24].

In the simulation of PT -symmetric systems, Hermitian
dilation Hamiltonians play a key role. Generally, these Hamil-
tonians are inseparable and act on certain global systems
composed of two subsystems [21,22]. This implies that there
exist nonlocal correlations between the subsystems. To inves-
tigate such correlations, we propose an approach to extract the
internal nonlocality when the global Hermitian Hamiltonian
is shared with Alice and Bob. With only local measurements
performed by Alice and Bob, we show that the expectations
of the Bell operator differ in different correlation pictures.
It gives a higher value of the upper bound when both the
classical and local Hermitian pictures are considered, but a
lower value of the upper bound for the simulation picture.
Moreover, when the simulated PT -symmetric Hamiltonian
approaches its exceptional point, the value of this upper bound
gives the largest departure from the local Hermitian systems.
Along the lines of quantum information approaches [25–29],
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our work provides a way to distinguish isospectral Hermitian
Hamiltonians with and without internal nonlocality. With the
ability to know whether a PT -symmetric subsystem is em-
bedded inside a global Hermitian one, our results provide the
figure of merit to test the reliability of the simulation, as well
as the verification for a PT -symmetric (sub)system.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the preliminaries on the related notions
of PT -symmetric systems and the CHSH (Clauser, Horne,
Shimony, and Holt) scenario. In Sec. III, the internal nonlocal-
ity is illustrated by investigating the correlation measurements
between Alice and Bob for the classical, local Hermitian, and
simulation picture, respectively. Discussions on the physical
implications of these three pictures and their essential differ-
ence from the CHSH scenario are given in Sec. IV. Finally, in
Sec. V we conclude with our results.

II. PRELIMINARIES

A. Basic notions and the simulation by dilation

The concepts of parity, time-reversal, and PT -symmetric
operators have been studied since the early age of quantum
mechanics. A linear operator H is said to be PT -symmetric if
HPT = PT H , where P and T are parity and time-reversal
operators. Here, we focus on finite-dimensional spaces, in
which a PT -symmetric operator H is said to be unbroken
if it is similar to a real diagonal operator; H is said to
be broken PT -symmetric if it cannot be diagonalized or
has complex eigenvalues [21]. PT -symmetric operators are
usually non-Hermitian but satisfy the condition of pseudo-
Hermiticity [11].

The simulation of PT -symmetric systems is closely
related to the mathematical concept of Hermitian
dilation [20]. Let H be a PT -symmetric operator on
Cn, and let Ĥ be a Hermitian operator on Cm, with
m > n. P1 is an operator defined by P1 : Cm → Cn,
P1[φ1

φ2
] = φ1, where φ1 ∈ Cn and φ2 ∈ Cm−n. Let

XĤ = {x : x ∈ Cm, P1Ĥx = HP1x, P1e−it Ĥ x = e−itH P1x}.
If P1XĤ = Cn, then we say that Ĥ is a Hermitian dilation
of H .

By evolving the Hermitian dilation Hamiltonian Ĥ on a
large space, the evolution of a PT -symmetric non-Hermitian
system can be realized in the subspace. In addition, only
unbroken PT -symmetric operators preserve such a property,
hence our discussions mainly focus on the case of unbroken
PT -symmetry. Actually, for any state |ψ〉, the definition of Ĥ
can ensure the following equation (unnormalized for conve-
nience):

e−it Ĥ (|0〉|ψ〉 + |1〉|τψ〉) = |0〉|e−itHψ〉 + |1〉|τe−itHψ〉,
where τ is an operator linked to the metric operator [21]. The
equation above clearly shows that there are two subsystems.
Moreover, by projecting out |1〉|τe−itHψ〉, the effect of a
non-Hermitian Hamiltonian can be realized by |0〉|e−itHψ〉
in the latter subsystem. An experimental realization of such
an evolution effect in the subsystem is called a simulation,
in which the preparation of Hermitian dilation Hamiltonian
plays an important role. As for more technical and experimen-
tal details, see Refs. [21,26].

In general, there exist various Ĥ to satisfy the dilation
scenario. Without loss of generality, we adopt the following
one by requiring

e−it Ĥ (|1〉|ψ〉 − |0〉|τψ〉) = |1〉|e−itHψ〉 − |0〉|τe−itHψ〉.
Now, the resulting Ĥ can achieve a simple form,

Ĥ = I2 ⊗ � + iσy ⊗ �, (1)

� = (Hτ− 1
2 + τ

1
2 H )(τ− 1

2 + τ
1
2 )−1, (2)

� = (H − τ
1
2 Hτ− 1

2 )(τ− 1
2 + τ

1
2 )−1, (3)

in which the details about τ can be referred to Refs. [20–22].
According to Eq. (1), the Hermitian dilation Hamiltonian

Ĥ is inseparable. That is, Ĥ cannot be written as a ten-
sor product of two local operators. As a consequence, it
implies the possibility of investigating the correlations that
Ĥ brings to the subsystems. Moreover, Ĥ is isospectral to
H . It means that the Hermitian dilation Hamiltonian has the
same eigenvalues as the simulated PT -symmetric Hamilto-
nian with twofold spectra, i.e., it has two multiplicities of
eigenvalues. Such a property implicitly allows us to use the
measurements on the large space to simulate the measure-
ments of the PT -symmetric system [23]. Briefly speaking,
by measuring the Hermitian dilation Hamiltonian Ĥ , one can
read out the eigenvalues of the PT -symmetric system.

B. Two-dimensional model

To illustrate our proposed concept in a clear way, we con-
sider a two-dimensional PT -symmetric Hamiltonian as an
example by following [20,30], i.e.,

H = E0I2 + s

[
i sin α 1

1 −i sin α

]
. (4)

The corresponding eigenvalues for this two-dimensional non-
Hermitian system are λ± = E0 ± s cos α. Moreover, there
exists an exceptional point when α = π

2 , in which case the
Hamiltonian is no longer diagonalized. When α �= π

2 , the
Hamiltonian H has real eigenvalues and can be diagonalized.
Hence, PT -symmetry is unbroken. Specifically, when α = 0,
the Hamiltonian returns to the Hermitian one.

By applying the dilation process given in Eqs. (1)–(3), the
corresponding Hermitian dilation Hamiltonian Ĥ has the form

Ĥ = I2 ⊗ � + iσy ⊗ �, (5)

� = E0I2 + ω0

2
cos ασx, (6)

� = i
ω0

2
sin ασz, (7)

where ω0 = 2s cos α [20,21].

C. CHSH scenario

As the joint correlation measurements will be performed
locally by Alice and Bob, it is instructive to briefly recall
Bell’s nonlocality and the related CHSH scenario [31,32]. In
a standard Bell’s test on nonlocality, two (sub)systems shared
by Alice and Bob are spatially separated. By performing local
measurements, Alice obtains several possible outcomes from
her subsystem, denoted as a, with the outcomes denoted as
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b from Bob’s measurements on his subsystem. Due to the
randomness in the local measurements, the outcomes a and b
may have different values. Nevertheless, these outcomes are in
general governed by a probability distribution p(ab|i j), where
the local measurements are labeled with the index i, j. Usually
the joint probability distribution reveals that

p(ab|i j) �= p(a|i)p(b| j). (8)

It implies that the results a and b are not independent, even
when Alice and Bob are spacelike separated. However, a
classical correlation theory does not admit nonlocality. Hence,
a possible explanation is that some dependence between the
subsystems was established when they interacted in the past,
eventually leading to the inequality shown in Eq. (8). Such an
explanation also suggests that if we take into account all the
past factors, described by some random variable ν, then the
joint probability distribution for a and b can be factorized as

p(ab|i j, ν) = p(a|i, ν)p(b| j, ν). (9)

Apparently, Eq. (9) shows that a and b are independent, which
is consistent with the classical (local) correlation theory. On
the other hand, by denoting q(ν) as the probability distribution
of ν, one can have

p(ab|i j) =
∫

N
dν q(ν)p(a|i, ν)p(b| j, ν), (10)

which is the condition for locality in the context of Bell’s test.
Equation (10) is the key to deriving the well-known CHSH

inequality. Suppose Alice can perform two local measure-
ments denoted as Ai, i ∈ {0, 1}, while Bob can also perform
two local measurements Bj, j ∈ {0, 1}. The possible out-
comes of Ai and Bj have two values labeled a, b ∈ {+1,−1}.
Now, let 〈AiBj〉 = ∑

a,b ab p(ab|i j) be the expectation value
of the product ab for given measurements AiBj . Here, AiBj is
often called the correlation function. With these notions, one
can further define the following Bell operator:

S = A0B0 + A1B0 + A0B1 − A1B1. (11)

According to Eq. (10) and some further calculations, one can
find that

〈A0B0〉 + 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉 � 2, (12)

which is known as the (classical) CHSH inequality. It is noted
that the discussion above is abstract and has nothing to do
with how to realize the measurements or whether the systems
are classical or quantum. The only ingredient is the classical
(local) correlations.

However, let us consider the two subsystems measured
by Alice and Bob, which are two qubits in the singlet state
|
−〉 = 1√

2
(|01〉 − |10〉), where |0〉 and |1〉 are the eigen-

states of σz for the eigenvalues of +1 and −1. Suppose that
the A0 and A1 correspond to the measurements of spin in
the orthogonal directions e0 and e1, respectively. Similarly,
B0 and B1 correspond to the measurements in the directions
− 1√

2
(e0 + e1) and 1√

2
(−e0 + e1). Then, we have

〈A0B0〉 + 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉 = 2
√

2, (13)

as 〈A0B0〉 = 〈A1B0〉 = 〈A0B1〉 = −〈A1B1〉 = 1√
2
. As one can

see, the violation of the classical bound given in Eq. (12)
reveals the nonlocal character of quantum theory.

III. THE INTERNAL NONLOCALITY IN SIMULATING
PT-SYMMETRIC SYSTEMS

We know that in the simulation paradigm, a PT -
symmetric (pseudo-Hermitian) system can be embedded into
a global Hermitian one. On the contrary, with only a global
Hermitian Hamiltonian at hand, how can we know whether
a pseudo-Hermitian Hamiltonian is embedded inside, or if
such a global Hermitian Hamiltonian is composed by local
Hermitian ones? Moreover, can we have the figure of merit to
test the reliability of the simulation paradigm?

A natural way to answer these questions is to investigate
the internal nonlocality of the global Hermiticity. As Eq. (1)
suggests, the Hermitian dilation Hamiltonian may bring non-
local correlations to the subsystems. Inspired by the CHSH
scenario, we propose here a CHSH-like discussion of the
nonlocality for the global Hamiltonian. Due to the fact that
the nonlocality does not directly come from the entangled
states but rather from the Hermitian dilation, our formulation
differs considerably from earlier studies in essence. To distin-
guish between our setting and the CHSH scenario on quantum
states, we coined the term internal nonlocality.

A. The simulation picture

Without loss of generality, let us take the two-dimensional
model given in Eq. (5) as an example. In the simulation pic-
ture, the Hermitian dilation Hamiltonian Ĥ is assumed to be
shared by Alice and Bob. Suppose Alice makes two local mea-
surements denoted as A0 and A1, while Bob also makes two
local measurements, denoted B0 and B1. By adopting similar
ideas to those used in the CHSH scenario, one can consider the
correlation functions BiAj . The reason why Bi comes before
Aj is that Alice is assumed to be in charge of the second
subsystem, which simulates the PT -symmetric Hamiltonian.
Due to the fact that they are actually “measuring” the global
Hamiltonian, Alice and Bob only need to use local states to
obtain the measurement results. Let Alice have the local state
{|u+〉 = u|0〉 + v|1〉} for A0 and {|u−〉 = v|0〉 − u|1〉} for A1,
while Bob has two local states {|0〉 and |1〉} for B0 and B1,
respectively. Hence the expectations of BiAj can be calculated
as follows:

〈B0A0〉 = Tr(|0〉〈0| ⊗ |u+〉〈u+|)Ĥ , (14)

〈B1A0〉 = Tr(|1〉〈1| ⊗ |u+〉〈u+|)Ĥ , (15)

〈B0A1〉 = Tr(|0〉〈0| ⊗ |u−〉〈u−|)Ĥ, (16)

〈B1A1〉 = Tr(|1〉〈1| ⊗ |u−〉〈u−|)Ĥ . (17)

Now, one can further consider the expectation value of the
Bell operator:

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
= Tr[|0〉〈0| ⊗ I2 + |1〉〈1| ⊗ (|u|2 − |v|2)σz

+ |1〉〈1| ⊗ 2(uv|0〉〈1| + uv|1〉〈0|)]Ĥ
= Tr[|0〉〈0| ⊗ � + |1〉〈1| ⊗ 2(uv|0〉〈1| + uv|1〉〈0|)�]

= 2E0 + (uv + uv) ω0 cos α. (18)
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Here, for the last term shown in Eq. (18), one also knows

|(uv + uv) ω0 cos α| � |2s cos2 α|, (19)

where the identity holds if and only if u = ±v. When the PT -
symmetric Hamiltonian approaches the exceptional point, that
is, α → π

2 , Eq. (18) gives only the value 2E0. However,
Eq. (18) can reach 2E0 ± 2s with α = 0 when we have a
Hermitian Hamiltonian. This means that the PT -symmetric
system gives the largest departure from a Hermitian system
when it tends to be broken. The unbroken PT -symmetry can
thus be viewed as an intermediate case.

B. The classical and local Hermitian pictures

In addition to the simulation picture, we study the same
setting but with another two pictures, namely the classical and
local Hermitian pictures, in order to give a clear illustration
of the internal nonlocality. First, the classical picture here
means that one just skips all the details of quantum mechanics
but only considers a classical description of what Alice and
Bob do. The only thing we ask for is to have the picture be
consistent with the simulation picture. That is, we assume that
one of the two observers, e.g., Alice, has a “PT -symmetric
like” subsystem, and the joint measurements of Alice and Bob
depict the characteristics of measuring the global Hamiltonian
Ĥ . Indeed, such a consistency rule plays a key role in giving
a classical picture. A natural consequence of this rule is to
assume the measurement results of Aj are just λ±, namely
the eigenvalues of the PT -symmetric Hamiltonian H . At
the same time, the results of Bi should be 1, such that the
correlation functions BiAj trivially give the eigenvalues of Ĥ .
Now Ai and Bi are determined, equivalently completing the
classical picture. Moreover, since Bob’s results always give 1,
apparently the two observers’ results and the corresponding
probability distributions are independent. Thus, we do have a
classical local picture.

Let us come back to calculate the expectation of the Bell
operator. As the results of Ai are the eigenvalues λ± and the
result of Bi is 1, we have

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉

=
∫

[B0(ν)(A0 + A1)(ν) + B1(ν)(A0 − A1)(ν)]dν

(20)

=
∫

[(A0 + A1)(ν) + (A0 − A1)(ν)]dν

= 2E0 + ω0 (p+ − p−),

where p± are the probabilities corresponding to the situations
when the results of A0 are λ±.

Secondly, let us consider the local Hermitian picture. Now,
the randomness comes from the global Hamiltonian Ĥ ′, which
is in a tensor product form of two local Hermitian Hamil-
tonians. To have this local Hermitian picture be consistent
with the simulation, one can assume that Ĥ ′ has the same
eigenvalues as Ĥ and one of the local Hamiltonians has the
same eigenvalues as H . Hence, we have Ĥ ′ = I ⊗ Hh, where
Hh = λ+|s+〉〈s+| + λ−|s−〉〈s−| and |s±〉 are two orthogonal
states. In contrast to Ĥ , the form of Ĥ ′ implies that it does not
have internal nonlocality. It also implies that by distinguishing

the isospectral global Hamiltonians Ĥ and Ĥ ′, one can dis-
tinguish a PT -symmetric Hamiltonian H from an isospectral
Hermitian Hamiltonian Hh.

Again, by substituting the Ĥ ′ in the local Hermitian picture
to Eqs. (14)–(17), the expectation of the Bell operator is

〈B0A0〉 + 〈B1A0〉 + 〈B0A1〉 − 〈B1A1〉
= Tr(I ⊗ |u+〉〈u+|)(I ⊗ Hh) (21)

+ Tr[(|0〉〈0| − |1〉〈1|) ⊗ |u−〉〈u−|](I ⊗ Hh),

which can be further reduced to

2〈u+|Hh|u+〉 = 2λ+|〈u+|s+〉|2 + 2λ−|〈u+|s−〉|2. (22)

As λ± = E0 ± ω0
2 , we can denote p± = |〈u+|s±〉|2 and reach

2E0 + ω0 (p+ − p−). (23)

By comparing Eq. (23) with Eqs. (18) and (20), all the expec-
tations in the three pictures contain two terms. The common
term 2E0 is the sum of the two eigenvalues λ+ and λ−, while
the other one represents a deviation term. This deviation term
is the same for the classical and local Hermitian pictures, as
both of them do not support the internal nonlocality. More-
over, we also have

|ω0(p+ − p−)| = |2s(p+ − p−) cos α| � |2s cos α|, (24)

which means that these two pictures give a larger value of the
upper bound than that obtained in the simulation picture.

IV. DISCUSSIONS

Here, we discuss the physical implications behind our
results by contrasting them with those of the CHSH sce-
nario [32]. Even though the generalization of the CHSH
scenario to PT -symmetric settings can be found in the lit-
erature [33], these approaches essentially differ from our
discussions. In the CHSH scenario, the two observers share
some entangled states and perform local measurements to
explore the correlations. On the contrary, in our setting, the
resource of correlations comes from the Hermitian dilation
Hamiltonian rather than states.

Moreover, in the CHSH scenario, the observers do perform
several local measurements. For example, Alice can measure
the spin in the e0 and e1 directions. However, in our scenario,
Alice performs two “local measurements” with two orthogo-
nal local states |u+〉 and |u−〉. According to von Neumann’s
measurement theory, these two states can only represent one
measurement rather than two. Furthermore, our randomness
and correlations come from the global Hamiltonian. Hence,
Alice and Bob can obtain “measurement results” simply by
inputting different states, reaching a similar effect to the mea-
surements in the CHSH scenario.

The most significant distinction between our discussions
and CHSH’s is that our scenario is concretely constructed and
logically derived by a consistency rule, which reflects the nat-
ural ideas and requirements in simulations of PT -symmetric
systems. This explains why the measurement results are a
posteriori, determined by the consistency rule in the classical
picture, while in the CHSH case they are a priori known.
It also explains why the classical and local Hermitian pic-
tures have the same bounds. Both pictures are constructed
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to be consistent with the simulation. The classical picture
gives a general and abstract description of Alice’s and Bob’s
measurements as well as the correlations in simulation, from
the perspective of locality. The local Hermitian picture can
be viewed as a quantum realization of this classical (local)
description. Hence the same upper bounds of the two pictures
are reasonable.

It is also worth noting that the expectation of the Bell
operator exists in a larger range for the classical and local Her-
mitian cases, rather than in the simulation case. At first glance,
the results are counterintuitive as the latter case possesses in-
ternal nonlocality. Indeed, nonlocal correlations yield a larger
range for the upper bound in the CHSH scenario. However,
our scenario is based on the consistency rule utilizing Ĥ to
simulate H and the measurements of Ĥ to simulate measure-
ments of H . The results of Eqs. (18), (20), and (23) are all
essentially characterizing the average deviation from the mean
value 2E0 in the measuring process. Note that Ĥ correlates
the subsystems, and the internal nonlocality can therefore be
viewed to impose some internal constraints on the system.
As a result, it is reasonable to have a smaller deviation term
in the simulation picture. Moreover, when approaching the
exceptional point, an unbroken PT -symmetric system shows
the largest departure from Hermitian systems. The minimal
deviation at the exceptional point is consistent with such an
intuition.

It should also be noted that the results of this paper mainly
focus on the two-dimensional case in Eq. (5). However,
Eq. (5) is a special case of Eq. (1). Hence, the analogy of
the Hermitian dilation Hamiltonians, as well as the isospectral
property, implies that the classical picture can be generalized
in general. That is, for a higher-dimensional Hamiltonian in
Eq. (1), we can similarly assume Alice’s results to be the
eigenvalues and Bob’s result to always be 1, establishing
a classical picture. By choosing meaningful Bell operators,
a discussion of internal nonlocality is natural in higher-
dimensional spaces.

Before the conclusion, we propose two potential applica-
tions. First, our results provide a figure of merit to know
and test the reliability of the simulation. Suppose we have
a set of devices that can produce the Hermitian dilation
Hamiltonian and simulate a PT -symmetric system. One may
wonder whether the device is reliable, or if it faithfully realizes
the simulation design. Apparently, this question is closely
related to whether the Hermitian dilation Hamiltonian is well-
prepared. To see this, one may have Alice and Bob perform
the joint correlation measurements, comparing the results to
Eq. (19). If the obtained value of the upper bound is larger
than that given in Eq. (19), then the device cannot produce the

needed global Hamiltonian and cannot be used for simulation.
Otherwise, it is likely to be reliable.

Moreover, our results can also help in the verification
problem of a PT -symmetric system. Consider the following
scenario. Let Alice have a system, which is either a simulated
PT -symmetric or an isospectral Hermitian one. Let Bob be
in charge of another system, which either serves as an an-
cillary subsystem in simulation or a completely independent
Hermitian system. Can they verify whether Alice’s system is
PT -symmetric or Hermitian just by making measurement?
Note that the isospectral property prevents one from seeing the
difference by simply reading out the eigenvalues. Moreover,
there exist infinitely many isospectral Hermitian Hamiltoni-
ans. To this end, Alice and Bob can locally measure the global
Hermitian Hamiltonian and evaluate the joint correlation mea-
surements. If the randomness comes from the classical or local
Hermitian pictures, they can obtain a large deviation from the
mean value. Thus, they know that the system is not simulated
to be PT -symmetric.

V. CONCLUSION

In summary, we propose an operational way to explore
the internal properties of PT -symmetric systems, as well as
their Hermitian dilations, by constructing a nonlocal scenario
between Alice and Bob. It is illustrated how to construct
correlation pictures based on some concrete procedures such
as simulation, proposing a different aspect of investigating
nonlocality. By performing local measurements, the resulting
expectation values make it possible to extract the internal
nonlocality in the global Hermiticity. The ranges in different
pictures clearly show the departure of PT -symmetric systems
from classical and Hermitian quantum systems, for which the
latter two share the same bound. The extremal property of
the exceptional point is obtained in the simulation picture.
These results not only show the characteristics of the internal
nonlocality, but they also can have potential applications. In
addition, despite focusing on the discussion of PT -symmetric
systems, it is possible to generalize our discussions to the
simulation of other non-Hermitian systems.
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