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We consider a multiparameter quantum metrology problem with bright soliton networks in the presence
of weak losses. We introduce the general Heisenberg limit (GHL) σχ = 1/Nk that characterizes fundamental
limitations for unknown parameter measurement and estimation accuracy σχ within linear (k = 1) and nonlinear
(k = 3) quantum metrology approaches to solitons. We examine multipartite NOON states specially prepared
for the improvement of multiparameter estimation protocols. As a particular example of producing such states,
we propose a three-mode soliton Josephson-junction (TMSJJ) model as a three-mode extension for the soliton
Josephson-junction bosonic model, which we previously proposed. The energy spectrum of the TMSJJ exhibits
sharp phase transition peculiarities for the TMSJJ ground state. The transition occurs from a Gaussian-like
(coherent) state to the superposition of entangled Fock states, which rapidly approach the three-mode NOON
state. We show that in the presence of weak losses the TMSJJ enables saturation scaling relevant to the optimal
state limit close to the GHL. Our findings open prospects for quantum network sensorics with atomtronic circuits.
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I. INTRODUCTION

Quantum metrology and sensorics represent a meaning-
ful practical result of current quantum technologies [1,2].
Real-world quantum metrological applications may be found
in fundamental science achievements, navigation and space,
geology, life science, ecology and environment, and civil en-
gineering (see, e.g., [3,4]). From the practical point of view,
advanced quantum metrology devices and sensors require an
interface with networks, which may be inherent to quantum
Internet in the near future (see [5]); quantum networks also
bring new advantages and opportunities to quantum sensorics
[6,7]. In practice, on-chip quantum sensor networks (QSNs)
may be implemented by atomtronic [8] or photonic [9–11]
circuit facilities. Thus, an urgent current goal is to study the
capabilities and fundamental limitations for the measurement
and estimation accuracy of distributed quantum sensors.

In the atomic optics domain, high-precision quantum
metrology devices operate with atomic Bose-Einstein conden-
sates (BECs) [12], which may be recognized as some analogs
of photonic setups [13]. Measurement and estimation of some
unknown phase-dependent parameters inherent to atomic sys-
tems are primary in this case. It is instructive to mention
linear and nonlinear quantum metrology approaches that we
examine in this paper.

In the framework of linear quantum metrology, estimated
phase φ linearly depends on average particle number N , i.e.,
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φ = χN , where χ is some unknown parameter that we wish
to specify. In nonlinear metrology, we deal with unknown
nonlinear phase shift φ = χNk , where k = 2, 3, . . .. In both
cases, one can introduce the generalized Heisenberg limit
(GHL)

σ
(k)
GHL � 1

Nk
, (1)

that establishes fundamental ultimate accuracy σ
(k)
GHL of one,

χ , parameter measurement and estimation.
Thus, familiar linear quantum metrology operates within

the Heisenberg limit (HL) obtained from (1) at k = 1. Note-
worthy, the HL may be saturated by various measurement
and/or detection procedures. For example, a two-mode Mach-
Zehnder interferometer fed by the ideal NOON state allows
a two-mode measurement procedure saturating the HL (see,
e.g., [14]). The detection procedure to achieve the HL may
be realized in the framework of parity-measurement detection
schemes [15,16]. On the other hand, as we showed in [17],
it is possible to establish a positive operator-valued measure-
ment (POVM) procedure that enables us to saturate the HL;
in general, an n-level quantum system provides at least n2

POVM elements. Theoretical studies of POVM peculiarities
in high-dimension systems have been performed in a num-
ber of works [18–23]. Quantum measurements established by
symmetric-informationally-complete (SIC) POVMs are op-
timal for quantum state tomography and were proposed in
systems of various dimensions (see [24–27]). SIC POVMs
were verified experimentally for photonic low-dimension
schemes including photonic circuits and spontaneous down
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conversion processes (see, e.g., [28–32]). These schemes are
described by discrete variables. However, in this paper, we
consider a mesoscopic number of particles that requires a
continuous variable approach. In this limit, SIC POVM meth-
ods represent a great interest and are applicable, at least in
theory (see [17]). However, the experimental verification of
SIC POVMs operating in a high-dimension system currently
looks quite cumbersome. To be more specific, in this paper,
we analyze the NOON state formation for mesoscopic atomic
systems described by continuous variables.

From a practical point of view, Eq. (1) implies phase
super-resolution that we can achieve within the N-particle
interference. In this sense, Eq. (1) helps to recognize phase
super-sensitivity that may be verified by the parameter
(see [33])

S = 1√
νNσχ

, (2)

where ν is the number of trials (measurements), and we set it
equal to 1 for simplicity; σχ represents the accuracy attainable
for the χ parameter measurement and estimation. Establishing
the quantum Cramér-Rao (QCR) bound for σχ from (2) we
obtain

0 � S �
√

F

N
, (3)

where F is the Fisher information related to the χ parameter
measurement and estimation. Notably, if we apply inequality
(1) to Eqs. (2) and (3), we can obtain

0 � S � Nk−1/2. (4)

The right part in Eq. (4) establishes the upper bound for
phase resolution performed by a quantum sensor. In the clas-
sical domain, S obeys inequalities

0 � Scl � 1, (5)

that may be achieved in the framework of the linear metrology
(k = 1) approach with coherent (Glauber) states. As it follows
from (3)–(5), purely quantum sensitivity for S , that is Sq ≡
S > 1, requires achievement of quantum Fisher information
(QFI) F beyond value F � √

N , which is relevant to the
standard quantum limit (SQL) of phase estimation.

At k > 1, Eq. (1) defines the super-Heisenberg limit (SHL)
that enables determination of the ultimate accuracy of un-
known parameter measurement and estimation within the
nonlinear quantum metrology. In this case, the HL can be
overcome even with Glauber’s coherent states due to nonlin-
earity [34]. It is shown that the two-mode NOON state can
saturate the SHL with k = 2 within an unknown nonlinear
phase shift estimation procedure. The SHL implies the use
of squeezing and nonlinear properties of the atomic system
(see [35]).

Previously, in [36], we showed that quantum bright soli-
tons provide the maximal value of degree k = 3 that may
be obtained with a Kerr-like medium due to soliton spa-
tial degrees of freedom. At the same time, we proposed the
soliton Josephson-junction (SJJ) device, which enables us to
produce Fock state superposition close to NOON states and
protected against losses of a small number of particles [37]. It
is important to stress that NOON as well as “superentangled”

states may be achieved with weakly attracting particles, which
correspond to negative scattering length (see [38,39]).

Recently, fundamental aspects of multiparameter sensorics
and metrology have become the subject of intensive study
[40,41]. Various measurement strategies and procedures are
discussed within simple two-mode phase estimation schemes
[42,43]. The capacity of nonclassical states aimed at improve-
ment of overall metrological accuracy achieved within QSNs
represents a primary task that has not been fully studied yet
(see, e.g., [44,45]).

In this paper, we continue our studies on quantum metrol-
ogy with solitons, established within the two-mode approach
[16,17,36,37,46,47]. In [16,36,37,46], we discussed in detail
atomic BECs possessing negative scattering length as a phys-
ical platform for metrology and SJJ realization in practice
(see [48]). The influence of losses and decoherence was an-
alyzed in [37,46,47].

The paper is arranged as follows. In Sec. II, we analyze
the fundamental limits for multimode (multiparameter) non-
linear quantum metrology with quantum solitons spatially
distributed within some QSN and established in Fig. 1(a).
We specify some peculiarities for parameter accuracy esti-
mation resulting from the implementation of the spatially
distributed multipartite NOON state. Then, we examine the
multiparameter metrology and sensing task in the practi-
cally important two-parameter quantum metrology limit. In
Sec. III, we give a general description of a three-mode soliton
Josephson-junction (TMSJJ) model for metrological appli-
cations. We show how to obtain a three-mode NOON-like
(entangled Fock) state by coupled bright solitons containing a
mesoscopic number of particles. First, we discuss a semiclas-
sical TMSJJ model for atomic BECs trapped in a symmetric
three-well potential. The geometry of the TMSJJ is presented
in Fig. 1(b). To be more specific, we analyze a completely
symmetric case of soliton couplings (see [49–51]). Second,
for the full-quantum TMSJJ model we examine the energy
spectrum exhibiting a phase transition to an entangled Fock
state that anticipates three-mode NOON state formation. In
Sec. IV, we combine these results accounting for losses that
eventually occur in the metrological scheme during quantum
state evolution [see Fig. 1(a)]. We examine a complete three-
mode soliton metrology task that includes the three-mode
NOON state preparation, phase accumulation, and measure-
ment procedure. The multiparameter estimation bounds with
quantum solitons in the presence of losses are elucidated using
the upper bound of Fisher information. We show that in the
framework of linear and nonlinear metrologies, the TMSJJ
allows approaching the GHL even with weak particle losses.
In the Conclusion, we summarize the results obtained.

II. FUNDAMENTAL LIMITS OF MULTIPARAMETER
NONLINEAR QUANTUM METROLOGY

Consider the measurement and estimation procedure for
a set of unknown parameters χ j , shown in Fig. 1(a), and
exploiting the (n = d + 1)-partite [(d + 1)-mode] spatially
entangled NOON state that we establish as

|ψin〉 = ε(|0, N, 0, . . . , 0〉 + |0, 0, N, . . . , 0〉 + · · · +
|0, 0, 0, . . . , N〉) +

√
1 − ε2d|N, 0, 0, . . . 0〉, (6)
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FIG. 1. (a) Sketch of multiparameter quantum metrology circuit with solitons. |ψin〉 is a multipartite state of quantum solitons prepared
for metrological tasks. This state distributes within the QSN and accumulates phases φ j containing information about estimated parameters
χ j ( j = 1, . . . , d). Operator ÛL denotes the action of a network beam splitter that allows us to build a measurement procedure of unknown
parameters with their estimation. Other details are given in the text. (b) Solitons layout for balanced tripartite NOON state preparation.
The solitons are trapped in a three-well potential (not shown) providing each-to-each tunnel coupling. The symmetry of the system indicates
invariance under cyclic permutation of phase and particle difference variables, respectively. The double-sided arrows illustrate tunnel couplings
between the solitons.

where ε �= 0 describes the amplitude of the estimated chan-
nels in Fig. 1(a). Then, assume that the |ψin〉 state is
distributed over the QSN nodes accumulating unknown phase
shifts φ j = χ jNk , j = 1, . . . , d . Thus, after transforming
|ψin〉, we obtain

|ψn〉 = ε(eiφ1 |0, N, 0, . . . , 0〉 + eiφ2 |0, 0, N, . . . , 0〉 + · · · +
eiφd |0, 0, 0, . . . , N〉) +

√
1 − ε2d|N, 0, 0, . . . , 0〉.

(7)

The QSN capacity corresponds to state |ψn〉 and consists
of simultaneous estimation up to d phase parameters χ j in
respect of the reference mode [the last term in (7)].

Equation (7) with k = 1 corresponds to the linear metrol-
ogy approach, while k > 1, k ∈ N, establishes the nonlinear
quantum metrology limit. Particularly, k = 2, if we use rou-
tine Kerr-like media for unknown phase shifts in Fig. 1(a)
and plane-wave description (see [34]). For nonlinear quan-
tum metrology with a soliton network, we can take k = 3
(see [37]).

In the framework of multiparameter quantum metrology,
we are interested in minimizing the overall variance

σχ ≡
(

d∑
i=1

σ 2
χ j

)1/2

, (8)

where χ ≡ {χ j} denotes a set of unknown parameters, and
σχ j is an accuracy of their simultaneous measurement and
estimation that we characterize by QFI. In a general case
of multiparameter estimation, the QFI, F̂ , represents a d×d
matrix, where d is the number of the parameters to be simul-
taneously estimated (see [41]). The QFI matrix elements take
the form

Fi j = 4Re[〈∂χiψn|∂χ j ψn〉 − 〈∂χiψn|ψn〉〈ψn|∂χ j ψn〉], (9)

where |ψn〉 is some n-mode state with n � d + 1; χi, j

are measurables, some phase parameters depending on N ;
|∂χi, j ψn〉 ≡ ∂

∂χi, j
|ψn〉. The measurement (overall) accuracy is

limited by the QCR bound, which for F̂ = {Fi j} is

σχ � [Tr(F̂−1)]1/2. (10)

Substituting (7) into (9) we obtain

Fi j = 4N2kε2(δi j − ε2), (11)

which gives Tr(F̂−1) = 1
N2k

d (1+ε2−dε2 )
4ε2 (1 − dε2).

Thus, for the balanced NOON state with ε = 1/
√

d + 1 we
obtain

σχ � 1

Nk

√
d (d + 1)

2
. (12)

In particular, for the two-mode NOON state metrology we
must take d = 1, and (12) leads to the GHL established
in (1).

At d > 1 the overall accuracy σχ degrades, and one can
obtain σχ > σ

(k)
GHL. For the three-mode NOON state metrol-

ogy, that we examine below, d = 2, the ultimate precision
is

√
3σ

(k)
GHL, obtained for the balanced NOON state at ε =

1/
√

3 [see (7)]. This limit we can overcome with nonbalanced

NOON state setting ε = 1/
√

d + √
d in (7) (see [44]):

σχ � 1

Nk

√
d (

√
d + 1)

2
, (13)

which for d = 2 approaches σχ � (1 + 1/
√

2)σ (k)
GHL �√

2.914σ
(k)
GHL, that gives a small advantage in comparison

with the balanced NOON state, and the preparation of such
optimized states (OSs) is even more complicated. Further, we
refer to σ

(k)
OS = √

2.914σ
(k)
GHL as the NOON OS limit, while the

main focus is made on the NOON-state-based metrology.
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III. TMSJJ MODEL FOR TRIPARTITE NOON
STATE PREPARATION

A. Semiclassical TMSJJ model

The preparation of state (6) and/or (7) for arbitrary large d
represents a nontrivial practical task. In this paper, we exam-
ine a realistic situation of quantum metrology with the TMSJJ
(n = 3) that enables us to prepare |ψin〉 or |ψn〉 close to the
tripartite NOON state [see (6) and (7)].

Below, we examine the possibility of realizing quantum
metrology and sensing with atomic TMSJJ, which is shown
in Fig. 1(b) and provides the preparation of states |ψin〉 and
|ψn〉, respectively (see [37]).

Consider the Hartree (variational) approach to the TMSJJ
that represents a generalization of the two-component SJJ (see
[16,36]). In Fig. 1(b) we establish the geometry of arranged
solitons. The Hamiltonian in the second quantization form

may be written as (see [16,17,52])

Ĥ =
3∑

j=1

â†
j

(
−1

2

∂2

∂x2
− u

2
â†

j â j

)
â j − κ

3∑
j=1

∑
i �= j

â†
i â j, (14)

where â j ≡ â j (x) is the bosonic annihilation operator obeying
commutation rule [âi(x), â†

j (x
′)] = δi, jδ(x − x′). In particular,

in atomtronics we can assume that condensates are placed
within three symmetrically arranged cigar-shaped each-to-
each coupled traps, as shown in Fig. 1(b). The nonlinear
particle interaction parameter, u = 2π |asc|/r0, is responsible
for Kerr-like nonlinearity [52]; r0 = √

h̄/Mω0 is the charac-
teristic trap scale in the transverse direction; M is the particle
mass; ω0 is the characteristic harmonic trap frequency; asc is
the BEC particle scattering length. For bright matter solitons,
we consider a BEC of attractive particles, such as 7Li, for
which asc < 0. We take tunneling coupling constant κ the

same for all coupling links between the solitons. The variational state for the system in Fig. 1(b) we chose as [53–55]

|N 〉 = 1√
N!

[∫ ∞

−∞
[ψ1(x)â†

1(x) + ψ2(x)â†
2(x) + ψ3(x)â†

3(x)]dx

]N

|0〉, (15)

where |0〉 ≡ |01, 02, 03〉 denotes the three-mode vacuum state; N is the total number of particles; ψ j (x) ( j = 1, 2, 3) is the
unknown variational function obeying the normalization condition

3∑
j=1

∫ ∞

−∞

∣∣ψ j (x)
∣∣2dx =

3∑
j=1

Nj

N
≡

3∑
j=1

n j = 1, (16)

where 0 � nj � 1 is the fraction of particles populating the jth well. Bosonic creation and annihilation operators act on total
state |N 〉 in (15) as follows:

â†
j (x)|N 〉 = √

N + 1ψ∗
j (x)|N+1〉,

â j (x)|N 〉 =
√

Nψ j (x)|N−1〉. (17)

The Hamiltonian function in the Hartree approximation may be obtained from Eq. (14) with Eqs. (15) and (17) and reads as

H = 〈N |Ĥ |N 〉 = N
∑

j

(
1

2

∣∣∣∣∂ψ j

∂x

∣∣∣∣2 − u(N − 1)

2
|ψ j |4 − κ

∑
i �= j

ψ∗
i ψ j

)
. (18)

Equation (18) implies coupled Gross-Pitaevskii equations

iψ̇ j = −1

2

∂2

∂x2
ψ j − u(N − 1)|ψ j |2ψ j − κψm − κψk,

j, m, k = 1, 2, 3, m �= j �= k. (19)

In the limit of the absence of coupling, i.e., at κ = 0
(condensates are isolated within their traps), Eqs. (19) possess
separable bright soliton solutions, which look like

ψ j = n j

√
u(N − 1)

2
sech

[
u(N − 1)

2
n jx

]
eiθ j , (20)

where θ j = u2(N−1)2n2
j

8 t is the jth soliton phase; j = 1, 2, 3.
The variational approach presumes that soliton populations

n j and phases θ j become time dependent if the weak coupling

between the solitons is realized, κ �= 0. Substituting (20) into
(18) and integrating over the space variable we obtain

Heff = 1

N

∫ ∞

−∞
Hdx

= −2κ
∑

j

⎛⎝�

3
n3

j + 1

4

∑
i �= j

Ii j cos[θ j − θi]

⎞⎠, (21)

where Ii j ≡ ni j (1 − z2
i j )(1 − 0.21z2

i j ); ni j = n j + ni; zi j =
(n j − ni )/ni j is the population imbalance between the ith and

jth solitons; � = u2(N−1)2

16κ
is the vital parameter that governs

TMSJJ various dynamical regimes. Notice, (21) describes the
energy of the system per particle.

Equation (21) establishes the TMSJJ model in the Hartree
approximation possessing two mutually conjugated sets of
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variables {n j} and {θ j}. From equations ∂n j

∂t = ∂Heff
∂θ j

and ∂θ j

∂t = − ∂Heff
∂n j

we obtain

ṅ1 = n31

2

(
1 − z2

31

)(
1 − 0.21z2

31

)
sin [�31] − n12

2

(
1 − z2

12

)(
1 − 0.21z2

12

)
sin [�12], (22a)

�̇12 = �n2
12z12 − 2z12

[
1.21 − 0.42z2

12

]
cos [�12] +

(
1

2

(
1 − z2

23

)(
1 − 0.21z2

23

)+ 2n3z23

n23

[
1.21 − 0.42z2

23

])
cos [�23]

−
(

1

2

(
1 − z2

31

)(
1 − 0.21z2

31

)− 2n3z31

n31

[
1.21 − 0.42z2

31

])
cos [�31], (22b)

where �i j = θ j − θi (note that
∑

�i j = 0); the dots in (22)
denote the derivatives with respect to renormalized time τ =
2κt . Equations for the other four variables n2, n3, �23, and �31

can be explicitly obtained from (22a) and (22b) with cyclic
permutation of indices i, j = 1, 2, 3.

We are interested in stationary solution of Eqs. (22) assum-
ing ṅ j = 0 and �̇i j = 0. In general, these solutions correspond
to the entangled Schrödinger-cat-like states, which admit
NOON state formation in some limit (see [16]). In this paper,
we restrict ourselves by examining a complete set of Eqs. (22)
useful for the NOON states.

In particular, let us suppose n2 = n3 = δ and n1 = 1 − 2δ

(δ → 0), when all particles may be accumulated in a one
soliton state. In this limit Eqs. (22) lead to

cos [�12] = cos [�31] = � − 0.5 cos [�23]

1.58
. (23)

The three-mode quantum metrology scheme, that we con-
sider below, requires one mode to be referenced, leaving us
two modes that accumulate phase shifts concerning the refer-
ence one. In the paper, we examine two particular cases: these
phase-shifted modes are either out of phase or in phase. In
particular, for the out-of-phase shifts we take for (23) �12 =
�31 ≡ �− and �23 = −2�− and obtain for the soliton phase

cos [�−] = √
1.124 + � − 0.79 (24)

existing only at � � 2.08.
For the second, in-phase shifts, limit, we take �12 =

−�31 ≡ �+ and �23 = 0 and obtain another solution

cos [�+] = � − 0.5

1.58
, (25)

which is also valid for � � 2.08.
Notice, at � = 2.08 both solutions coincide at �± = 0,

providing another important special case of the NOON state
preparation, which we discuss below.

The stationary solutions of (22) under consideration imply
n1 ≈ 1 or, similarly, N1 ≈ N and N2 ≈ N3 ≈ 0 that form state
|N, 0, 0〉 for the first mode of the three-mode NOON state. In

the same manner, we can find solutions for the other, n2 ≈ 1
and n3 ≈ 1, modes involved in the NOON state. The explicit
form of the three-mode NOON state that may be obtained
from (15) and (20) and takes into account (23) looks like

|N00N〉± = 1√
3

(|N, 0, 0〉 + eiN�±|0, N, 0〉

+ e±iN�± |0, 0, N〉), (26)

where ± subscripts identify the in- and out-of-phase NOON
states. In (26) we presume that the first channel of the inter-
ferometer is a reference one, setting formally θ1 = 0.

Thus, we can associate each of states |N00N〉± in (26) with
state |ψn〉 [see (7)], which may be used in quantum metrology
to estimate the parameters embodied in phases �±. In this
case �± directly relates to unknown parameters χ j shown in
Fig. 1(a).

B. Quantum TMSJJ model

To develop a fully quantum TMSJJ model, it is necessary
to quantize effective Hamiltonian (21). The quantization pro-
cedure that we use below is similar to the one prescribed in
[46].

First, we describe the number of particles populating each
of the solitons by operators N̂i = â†

i âi, i = 1, 2, 3.
Second, we represent annihilation operators âi as

âi =
√

N̂ieiθ̂i (see [56]). Thus, one can use mapping
2N

√
nin j cos[�i j] → (â†

i â j + â†
j âi ), i, j = 1, 2, 3, i �= j. We

also introduce relative atomic population imbalance operator

ẑi j = â†
j â j−â†

i âi

â†
j â j+â†

i âi
and formally establish

√
1 − ẑ2

i j in the Taylor

series form as √
1 − ẑ2

i j =
∞∑

k=0

(−1)kCk
0.5ẑ2k

i j , (27)

where Ck
0.5 = 1

k!

∏k−1
l=0 (0.5 − l ). Finally, the TMSJJ quan-

tum Hamiltonian in the second quantization form looks like
[see (21)]

ĤTMSJJ = 2κ

(
− �

3N3

∑
i

(
â†

i âi
)3 − 1

8N

{∑
i �= j

∞∑
k=0

(−1)kCk
0.5

(
1 − 0.21ẑ2

i j

)(
â†

i â j + â†
j âi
)
ẑ2k

i j + H.c.

})
, (28)

where H.c. stands for the Hermitian conjugate.
We characterize the tripartite quantum state of coupled solitons without losses in general as

|(τ )〉 =
N∑

N1=0

N−N1∑
N2=0

AN1,N2 (τ )|N1, N2, N3〉, (29)
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FIG. 2. Distributions for the TMSJJ ground state at (a) � = 0, (b) � = �cr ≈ 3.302 72, and (c) � = 3.305. N = 20.

where N1 + N2 + N3 = N = const; τ = 2κt . Coefficients AN1,N2 (τ ) in (29) obey Schrödinger equation

i
∂

∂τ
AN1,N2 (τ ) = 〈N1, N2, N3|ĤTMSJJ|(τ )〉. (30)

Substituting (29) and (28) into (30) we obtain

iȦN1,N2 (τ ) = αN1,N2 (�)AN1,N2 + βN1,N2 AN1−1,N2+1 + βN2,N1 AN1+1,N2−1

+ βN2,N3 AN1,N2−1 + βN3,N2 AN1,N2+1 + βN3,N1 AN1+1,N2 + βN1,N3 AN1−1,N2 , (31)

where we made definitions

αNi,Nj = −�

3

N3
i + N3

j + (N − Ni − Nj )3

N3
, (32a)

βNi,Nj = − 1

2N

1

Ni + Nj

⎛⎝(Nj + 1)
√

Ni(Ni − 1)

[
1 − 0.21

(
Nj − Ni

Nj + Ni

)2
]

+ Ni

√
Nj (Nj + 1)

[
1 − 0.21

(
Nj − Ni + 2

Nj + Ni

)2
]⎞⎠.

(32b)

Coefficient αNi,Nj (�) corresponds to the energy of the
intrawell particle interaction for the TMSJJ system with quan-
tum numbers N1 = Ni, N2 = Nj , and N3 = N − Ni − Nj at
given �. The βNi,Nj coefficient describes the interwell inter-
action accompanied by tunneling of a single particle from the
ith soliton to the jth one.

Hamiltonian (28) is then diagonalized, and one obtains
energy eigenvalues Em, represented in Fig. 3 as a function of
tailoring parameter �. The ground-state energy of the TMSJJ
at � < �cr is E/κN ≈ −1.911 − 0.008�; it is marked by the
solid blue line in Fig. 3. As seen from Fig. 2(a), at � < �cr the
TMSJJ ground state is a Gaussian-like state that corresponds
to the superfluid state of BECs; the particles tend to equally
populate all three wells. In Fig. 3 the quantum phase transi-
tion is clearly seen to occur at � = �cr ≈ 3.302 72, similarly
to the one in the two-mode SJJ model at � ≈ 2.000 992 5
(see [46]).

In Fig. 2, we establish the ground-state behavior for the
quantum TMSJJ system nearby critical point �cr. In partic-
ular, at � = �cr the transition to the three-mode entangled
Fock state occurs; all N particles tend to populate “edges”
|N1, 0, 0〉, |0, N2, 0〉, and |0, 0, N3〉 in the Fock state basis. In
this limit, both Gaussian-like and NOON states of the TMSJJ
possess the same energy, and, thus, the resulting ground state

represents a coherent superposition of them [see Figs. 3 and
2(b)].

At � > �cr, the NOON state, that is

|N00N〉 = 1√
3

(|N, 0, 0〉 + |0, N, 0〉 + |0, 0, N〉), (33)

becomes energetically favorable for the ground state of soli-
tons [see Fig. 2(c)]. NOON state (33) possesses the energy

E = −κN
2�

3
, (34)

indicated with the lower part of the red dashed line in
Fig. 3. Noteworthy, at � � 2.08 the Hartree approach predicts
NOON state (26) that corresponds to some excited levels in
Fig. 3. Roughly speaking, the value of the � parameter for
these states corresponds to the same energy (34) for the upper
part of the red dashed line in Fig. 3. Thus, state (33) represents
the tripartite NOON state obtained in (26) at �± = 0. We will
use the NOON state in (33) as a probe one, |ψin〉 [see (6)], for
two-parameter metrological purposes [see Fig. 1(a)].

The feasibility of achieving �cr in current experiments
with bright solitons is critical for this paper. Notably, usual
(two-mode) condensate Josephson junctions, which pose neg-
ative scattering length, enable us to obtain the NOON state in

062612-6



QUANTUM SENSOR NETWORK METROLOGY WITH BRIGHT … PHYSICAL REVIEW A 108, 062612 (2023)

FIG. 3. TMSJJ spectrum as a function of �; N = 20. The phase
transition occurs at �cr = 3.302 72. The thick blue and dashed red
lines denote the energies of atom-coherent and NOON states

the limit of � � 1, that implies a large number of particles
(see, e.g., [36]). Practically, this limit is hardly achievable
with attractive condensate particles due to the condensate
wave-function collapse that occurs at N � 5×103 for lithium
condensates [48,57]. In contrast, the NOON states based on
matter-wave bright solitons may be observed with BEC soli-
tons possessing the mesoscopic number of particles (up to
1000) (see [37,48,57–59]). The value of negative scattering
length may be tailored employing the Feshbach resonance
technique (see [60]). Thus, critical value �cr for the three
soliton model may be obtained in the same manner as we
previously discussed in [46] for the SJJ system.

Noteworthy, Figs. 2–4, which illustrate the main results
in this paper, are plotted for the physically small number of
particles N = 20 because of lacking computational facilities.
Formally, such a number of particles in real-world experi-
ments requires extremely large soliton nonlinearity (see [58]).
However, the key physical features we discuss throughout
this paper for coupled solitons remain unchanged with N
increasing as a parameter. Thus, we expect the obtained results
to be valid for the mesoscopic number of particles (up to
1000) when bright solitons are stable and may be formed in
condensates with negative scattering length (see [48]).

IV. LOSSY QUANTUM METROLOGY WITH TMSJJ

Here, we examine a practically feasible two-parameter
quantum metrology problem with solitons in the pres-
ence of losses. We do not consider the case when loss
and decoherence occur under the probe (multipartite) state
|ψin〉 preparation for further metrological implementation
[see Fig. 1(a)]. We discussed in detail how atomic conden-
sates are suitable for |ψin〉 preparation in the two-mode limit
in [46] (see also [17,47]). Below we assume that losses
may appear in the scheme during probe state |ψin〉 evolution
[see Fig. 1(a)]. The metrology protocol consists of three steps.
The first one corresponds to three-mode NOON state |ψin〉 =
|N00N〉 preparation that may be realized by the TMSJJ de-
vice [see (33)]. Then, we assume that two modes accumulate
relative phases, that are χ dependent, while one (reference)
mode remains unshifted [see Eq. (7)]. Finally, the third step
requires some linear operation ÛL to mix all the modes and
make them interfere. For three modes (n = 3) we can use a
so-called tritter, which is familiar in quantum optics and may
be designed by a photonic circuit [61].

We exploit the fictitious beam splitter (FBS) method ac-
counting for particle losses in the scheme in Fig. 1(a).
Consider three FBSs, which impose equal transparency pa-
rameter 0 < η � 1; the ideal lossless quantum metrology
limit corresponds to value η = 1. We assume that each FBS
acts on a separate channel of the interferometer, transforming
the corresponding Fock state as follows (see [62]):

|m〉 →
m∑

l=0

√(
m

l

)
ηm(η−1 − 1)l |m − l〉 ⊗ |l〉, (35)

where m is the initial population of the mode; l is the number
of particles lost; and

(m
l

) = m!
l!(m−l )! . Notice, in the optical

experiment actual beam splitters can be used to model losses.
In this case, the number of particles lost from each mode li,
i = 1, 2, 3, can be measured with photon number resolving
detectors.

To be more specific, we consider lossy quantum metrology
operating with the input state (29) generated by the TM-
SJJ. We consider the third mode as the reference one [see
Fig. 1(a)]. The other two modes accumulate a relative phase
shift described by operator

ÛPS = exp[iχ1(â†
1â1)k + iχ2(â†

2â2)k]. (36)

Noteworthy, operator (36) commutes with the Kraus opera-
tor that describes the particle losses within the FBS approach.
Therefore, it is not important where particles are lost; it may
happen before or after the phase accumulation (see [62]).

Since we are not interested in the lost particles, we can trace them out and consider the mixed output quantum state with a
density matrix

ρ =
N∑

l1=0

N−l1∑
l2=0

N−l1−l2∑
l3=0

pl1,l2,l3 |ξl1,l2,l3〉〈ξl1,l2,l3 |, (37a)

|ξl1,l2,l3〉 = 1√
pl1,l2,l3

N−l2−l3∑
N1=l1

N−N1−l3∑
N2=l2

AN1,N2

√
BN1,N2

l1,l2,l3
eiχ1Nk

1 +iχ2Nk
2 |N1 − l1, N2 − l2, N3 − l3〉, (37b)
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where N3 = N − N1 − N2,

BN1,N2
l1,l2,l3

=
(

N1

l1

)(
N2

l2

)(
N3

l3

)
ηN (η−1 − 1)l (38)

with l = l1 + l2 + l3;

pl1,l2,l3 =
N−l2−l3∑

N1=l1

N−N1−l3∑
N2=l2

|AN1,N2 |2BN1,N2
l1,l2,l3

is the probability to lose exactly l1, l2, and l3 particles from the three interferometer channels.
For the QFI, we restrict ourselves only by its upper bound, F̃ , which looks like

Fi j � F̃i j = 4
N∑

l1=0

N−l1∑
l2=0

N−l1−l2∑
l3=0

pl1,l2,l3 [〈∂χiξl1,l2,l3 |∂χ j ξl1,l2,l3〉 − 〈∂χiξl1,l2,l3 |ξl1,l2,l3〉〈ξl1,l2,l3 |∂χ j ξl1,l2,l3〉]. (39)

Substituting (37) into (39) we obtain

F̃i j = 4
N∑

N1=0

N−N1∑
N2=0

(NiNj )
k|AN1,N2 |2

− 4
N∑

l1=0

N−l1∑
l2=0

N−l1−l2∑
l3=0

(∑N−l2−l3
N1=l1

∑N−N1−l3
N2=l2

Ni|AN1,N2 |2BN1,N2
l1,l2,l3

)(∑N−l2−l3
N1=l1

∑N−N1−l3
N2=l2

Nj |AN1,N2 |2BN1,N2
l1,l2,l3

)
∑N−l2−l3

N1=l1

∑N−N1−l3
N2=l2

|AN1,N2 |2BN1,N2
l1,l2,l3

. (40)

Notice, at η = 1 (i.e., without particle losses) BN1,N2
0,0,0 = 1 and

BN1,N2
l1,l2,l3

= 0 for any l1,2,3 > 0. In this case F̃ = F .
Coefficients AN1,N2 can be obtained by numerical simula-

tion of Eqs. (31) and (32) for various �. Figure 4 exhibits the
principal results of this paper. It demonstrates the capability
of the TMSJJ for quantum state preparation, which is relevant
to quantum metrology with solitons. In particular, Fig. 4(a)
characterizes the linear quantum metrology, while Fig. 4(b)
describes the nonlinear quantum metrology approach. We rep-

resent the accuracy bound for the χ -parameter measurement
and estimation as a function of � for different η:

σ (k) = [
Tr
( ˆ̃F

−1)]1/2
, (41)

where ˆ̃F ≡ {F̃i j} is the QFI upper bound matrix.
The thick blue curves in Fig. 4 are relevant to the η = 1

limit, characterizing the maximal metrological capacity that
may be achieved without losses in general. In particular, the
upper thick blue dashed line characterizes the SQL within

FIG. 4. Accuracy bound σ (k) vs vital parameter � for (a) linear (k = 1) and (b) nonlinear (k = 3) quantum metrology protocols with
solitons, respectively. The losses are characterized by deviation of the η parameter from unity. The number of particles is N = 20. The limiting
linear quantum metrology is characterized by SQL(σSQL = √

3/N) and SIL(σSIL = √
3/ηN), the dashed lines in (a). Nonlinear quantum

metrology described by means of NQL (σNQL ≈
√

27/N5) and NIL (σNIL ≈
√

27/ηN5), the dashed lines in (b). In both cases the black dash-
dotted lines denote optimized state accuracy σ

(k)
OS = √

2.9/Nk and thin solid black lines denote GHL σ
(k)
GHL = 1/Nk . The insets demonstrate

accuracy bounds σ (k) in the vicinity of critical point � = �cr. Other details are given in the text.

062612-8



QUANTUM SENSOR NETWORK METROLOGY WITH BRIGHT … PHYSICAL REVIEW A 108, 062612 (2023)

the linear metrology approach, and nonlinear SQL for the
nonlinear one. Both of them may be attained with coherent
states (see [44]). One can estimate these limits in the case
of two-parameter metrology based on Gaussian three-mode
quantum state

|ψ〉 =
N∑

N1=0

N−N1∑
N2=0

√
p(N1, N2)eiχ1Nk

1 +iχ2Nk
2

× |N1, N2, N − N1 − N2〉, (42)

where

p(N1, N2) = 9

2
√

3πN
exp

⎡⎣− 9

4N

(
N1 + N2 − 2N

3

)2

− 3

4N
(N1 − N2)2

⎤⎦ (43)

characterizes the Gaussian distribution function for N � 1.
Equation (43) implies σSQL = √

3/N for the linear quantum
metrology (k = 1) approach, and σNQL ≈

√
27/N5 for the

nonlinear one, k = 3.
In the presence of weak losses σSQL and σNQL establish the

standard interferometric limit (SIL) and nonlinear interfero-
metric limit (NIL):

σSIL =
√

3

ηN
, (44)

σNIL ≈
√

27

ηN5
. (45)

Also in Fig. 4 we focus on the area nearby the critical value
�cr ≈ 3.302 72 that corresponds to the phase transition to the
NOON state for the TMSJJ; this area is zoomed in the insets
to Figs. 4(a) and 4(b), respectively.

Without of losses in general, accuracy σ (k) approaches
the optimal state level (see the thick blue curves in Fig. 4).
Figure 4 clearly demonstrates that accuracy σ (k) beats vital
classical interferometric limits (44) and (45) for � > �cr

even in the presence of moderate losses, i.e., when an almost
NOON state is prepared by the TMSJJ.

Finally, let us examine the measurement and estimation
procedure with states |N00N〉± capable for |ψn〉 formation as
a result [see (7) and (26)]. We assume that the three-mode
NOON state possesses phase shifts �± providing a unique op-
portunity to estimate parameter χ ≡ �/N2 ≡ u2/16κ . Since
there is only one χ parameter to be measured effectively, the
QFIs may be calculated as

F± = 4[±〈∂χN00N |∂χ N00N〉± − |±〈∂χN00N |N00N〉±|2],

(46)

where F+ and F− are the QFIs for in- and out-of-
phase solitons, respectively; |∂χN00N〉± ≡ ∂

∂χ
|N00N〉± =

∂�±
∂χ

∂
∂�±

|N00N〉±; |N00N〉± is state (26), and phases �± obey
(24) and (25).

After some straightforward calculations for the accuracies
of the χ parameter measurement and estimation using the in-
phase (σχ+) and out-of-phase (σχ−) solitons configurations, we
obtain

σχ+ = 1.58/N3, (47)

σχ− = 1.22/N3, (48)

respectively. Remarkably, for both cases, accuracy is inversely
proportional to N3 which represents the metrological limit of
phase estimation for interacting solitons [see Figs. 4(a) and
4(b)] [16]. Notably, some improvement of accuracy σχ− (in
comparison with σχ+) appears due to the nonlinear soliton
phase counteraccumulation (see [63]).

V. CONCLUSION

In this paper, we have considered the d-parameter quantum
metrology problem (d > 1) with sensor networks operating
with bright solitons. The GHL is introduced for both linear
and nonlinear quantum metrology tasks. In this framework,
we have first examined the multipartite NOON state dis-
tributed over QSN. Notably, general strategies, which use

multipartite NOON states, demonstrate the
√

d (d+1)
2 times

accuracy degradation in the d parameters measurement and
estimation problem [see (12)]. Thus, we have shown that the
balanced NOON state is not optimal even without losses in
this case. However, for the QSNs, which use coupled solitons,
with moderate d , the accuracy is close to the fundamental
GHL established in this paper. To be more specific, we have
considered the TMSJJ model that allows preparation of the tri-
partite NOON-like (probe) state suitable for the two parameter
metrology problem. The TMSJJ represents a generalization
of the two-mode soliton Josephson-junction system estab-
lished for three weakly coupled solitons (see [37]). We have
shown that the TMSJJ exhibits the quantum phase transition
to the superposition of entangled Fock states capable of the
three-mode NOON state formation with a mesoscopic num-
ber of particles. The phase transition occurs at some critical
value �cr of dimensionless parameter � that may be obtained
within the current experiments with weakly coupled atomic
condensates. We have shown that beyond the critical value
of parameter � accuracy σ (k) approaches the optimal state
even in the presence of weak losses. We have also provided
the quantum metrology protocol of the Kerr-like nonlinear
χ -parameter measurement and estimation within the in-phase
and out-of-phase soliton configurations. It is shown that
the best accuracy of the measurement is close to the GHL
[see (48)], which we can achieve with the out-of-phase inter-
acting solitons. Our findings open prospects for the problems
of spatially distributed quantum sensing and metrology.
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