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Even though heralded single-photon sources have been generated routinely through spontaneous parametric
down conversion, vacuum and multiple photon states are unavoidably involved. With machine learning, we report
the experimental implementation of photon number state tomography by directly estimating target parameters.
Compared to the Hanbury Brown and Twiss measurements only with clicked events recorded, our neural-
network-enhanced quantum-state tomography characterizes the photon number distribution for all possible
photon number states from the balanced homodyne detectors. By using the histogram-based architecture, a direct
parameter estimation on the negativity in Wigner’s quasiprobability phase space is demonstrated. Such a fast,
robust, and precise quantum-state tomography provides us a crucial diagnostic toolbox for the applications with
incoherent mixture of Fock states.
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I. INTRODUCTION

Quantum-state tomography (QST) refers to the methodol-
ogy in reconstructing the unknown quantum state with the
acquired experimental data [1,2]. The maximum likelihood
estimation (MLE) for QST finds the best-fitted probability
distribution by treating the whole density matrix as the target
of estimation [3–5]. As long as a sufficient computational
effort is applied, MLE consistently yields a robust estima-
tion, with the effectiveness in estimation strongly depending
on the quantity of available data. Nowadays, QST has been
successfully implemented as a diagnostic toolbox both for
many-qubit (or qudits) systems in higher dimensions and for
continuous variables in infinite dimensions [6–11].

However, MLE suffers from the overestimation problem
as the required amount of measurements to reconstruct the
quantum state exponentially increases with the number of
involved modes. To overcome the overestimation problem in
MLE, several modified algorithms are proposed, such as per-
mutationally invariant tomography [12], quantum compressed
sensing [13], tensor networks [14,15], generative models [16],
and restricted Boltzmann machines [17], by assuming some
physical restrictions imposed upon the state in question.
Moreover, unavoidable coupling from the noisy environment
makes the reconstructions on the density matrix with state
degradation embedded, resulting in dealing with a nonsparse
matrix in a larger Hilbert space.

With the power to find the best fit to arbitrarily complicated
solutions, machine-learning (ML) enhanced QST has demon-
strated its advantages in extracting complete information
about the quantum states [17–21]. Furthermore, instead of
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using the reconstruction model in training a truncated den-
sity matrix, with ML one may directly generate the target
parameters with a supervised characteristic model [22]. Such a
characteristic model-based ML-QST can be easily installed on
edge devices such as a field programmable gate array (FPGA),
serving as an in-line diagnostic toolbox for all possible appli-
cations. As an example, this ML-QST has also been applied
to the reconstruction of Wigner current [23], demonstrating
experimentally quantum dynamics in phase space in great de-
tail. Compared to the time-consuming MLE, ML-QST paves
the road toward a real-time and online QST [23,24].

With the benefits from the good properties of the Gaus-
sian states, including vacuum and squeezed states, a neural
network can directly analyze the raw data to obtain the first
and second moments of the probability density function. By
applying the well-developed methods in pattern recognitions
[25–28], one can easily deal with various Gaussian states,
producing a single scan QST in speeding up data acquisition
and data processing [20]. Nevertheless, difficulties arise for
such a relatively simple prediction map when non-Gaussian
states are attacked. One may increase the number of neurons
in dealing with non-Gaussian states, however the training
process tends to cause an overfitting problem.

In the family of non-Gaussian states, single-photon Fock
states play the core role as photonic qubits to carry quantum
information encoded [29]. Although the request for an on-
demand source of single photons has led to intense research
into developing truly deterministic single-photon states, her-
alded single-photon sources can be easily generated through
correlated pairs of photons, by detecting one photon (the
heralding photon). After the first experimental observation in
1970 [30], nowadays, creating correlated photon pairs from
spontaneous parametric down conversion (SPDC) has been
routinely demonstrated with χ (2) nonlinear crystals [31].

2469-9926/2024/110(5)/053705(8) 053705-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5227-8248
https://orcid.org/0000-0003-4813-3833
https://orcid.org/0000-0001-6089-7022
https://orcid.org/0000-0002-7171-7274
https://ror.org/00zdnkx70
https://ror.org/00zdnkx70
https://ror.org/00zdnkx70
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.053705&domain=pdf&date_stamp=2024-11-07
https://doi.org/10.1103/PhysRevA.110.053705


HSIEN-YI HSIEH et al. PHYSICAL REVIEW A 110, 053705 (2024)

To characterize a single-photon Fock state, the common
method is based on the second-order correlation function,
g(2)(τ ), i.e., the Hanbury Brown and Twiss (HBT) interferom-
eter [32–34]. The standard test for single-photon sources is a
value of the second-order correlation function of the emitted
field below 1/2 at zero time delay, i.e., g(2)(0) < 1/2. How-
ever, this criterion alone provides no information regarding
the amplitude of the single-photon contribution for general
quantum states. In particular, a low-intensity light source al-
ways has a vacuum contribution in the quantum state of light,
cloaking actual single-photon projection [35,36].

In addition to HBT measurements, nonclassical effects in
the single-photon Fock states can be demonstrated in phase
space [37], such as a negative value in the Wigner function
[38]. Homodyne detection of the rotated quadratures pro-
vides an experimental implementation for the reconstruction
on the Wigner function in phase space, through the inverse
Radon problem [39,40]. Tomographic reconstruction of the
single-photon states has been experimentally realized first
with phase-randomized pulsed optical homodyne tomography
[41–43], then with continuous temporal-mode matching [44],
toward having real-time and complete temporal characteriza-
tion of a single photon [45]. The development on homodyne
tomography also provides a bridge between the single-photon
and squeezed-vacuum states [46–48], as well as a methodol-
ogy for various non-Gaussian states such as two-photon Fock
states and optical cat states [49,50].

As the neural network predictor is often trained from some
specific and limited amount of data, in this paper, we de-
velop the machine-learning enhanced Fock-state tomography
with the histogram-based architecture. Histogram-based ap-
proaches are often used to reduce the computational cost [51].
With an appropriately chosen bin width for the histogram, we
demonstrate that the resulting quantum-state reconstruction
can still keep fidelity high. Furthermore, with the capability of
hybrid quantum-classical neural networks or quantum neural
networks, the improvement in increased accuracy while re-
ducing computational resources is also possible with quantum
machine learning [52].

The paper is organized as follows: in Sec. II, we introduce
our experimental setup to perform the homodyne detections
on heralded single-photon Fock states, generated from SPDC
process inside a bow-tie cavity. Then, the implementations of
the histogram-based neural network are illustrated in Sec. III.
The comparisons on the predicted photon number distribu-
tions from MLE and the neural network, also as a function of
the SPDC pumping power, are given in Sec. IV. Moreover, a
direct parameter prediction on the negativity is demonstrated,
validating the feature extraction from our direct parameter
estimations. Finally, we summarize this paper with some per-
spectives in Sec. V.

II. EXPERIMENTAL SETUP OF OUR SINGLE-PHOTON
QUANTUM-STATE TOMOGRAPHY

The experimental setup for our heralded single-photon
source and the quantum-state tomography is illustrated in
Fig. 1. Here, the main laser source is a continuous-wave
Nd:YAG laser at the wavelength of 1064 nm. This laser is
split into two parts via a beam splitter: one serves as the local

FIG. 1. (a) Our experimental setup to generate single-photon
Fock-state tomography and its quantum-state tomography. (b) A
simple schematic for generating heralded single-photon process by
SPDC process. SHG, second harmonic generator; BHD, balanced
homodyne detector; OSC, oscilloscope; SNSPD, superconducting
nanowire single-photon detector; FC, filter cavities; BS, beam split-
ter; PBS, polarizing beam splitter.

oscillator beam for the balanced homodyne detector (BHD),
while the other one serves as the pump field for the second
harmonic generator (SHG). The SHG provides the frequency
doubling at 532 nm, through a nonlinear crystal, i.e., period-
ically poled lithium niobate (PPLN), inside a bow-tie cavity.
Then, the green light of the SHG signal is injected into another
bow-tie cavity with a type-II PPLN crystal inside, in order to
perform the SPDC process, which generates photon pairs in
two orthogonal polarizations. The full width at half maximum
of our SPDC cavity is 31.8 MHz and the free spectral range
is 1.052 GHz. The outputs of orthogonal polarization beams,
denoted as signal |1〉s and idler |1〉i photons in Fig. 1(b), are
separated by a polarization beam splitter.

To ensure the mode matching in degenerate modes, the
idler photon from the SPDC cavity is injected into a filter
cavity (FC) system with 6.5 MHz in bandwidth. This FC
system is composed of a triangle cavity and two Fabry-Pérot
cavities. The detection on idler photons is performed by a
superconducting nanowire single-photon detector (SNSPD).
Finally, the SNSPD triggers the BHD to record the signal
photons. As the Fock states are phase independent, we do
not perform the measurement on rotated quadratures. The
extracted quadrature data are obtained by integrating the tem-
poral mode function on the experimental data, i.e.,

X̂i =
∫

∞
f (t )x̂i(t ) dt,

with x̂i being the ith measurement data from the BHD.
Here, the temporal mode function f (t ) = √

πγ e−πγ |t−tc| is
described by the center time for a trigger event tc, with the
decay rate of SPDC, denoted as γ .

In Fig. 2, we report our measured data on the second-order
correlation function at zero time delay, g(2)(0), as a function of
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FIG. 2. Measured data on the second-order correlation function,
g(2)(0), as a function of the recorded heralding rate in kHz, with the
corresponding pump power labeled (on top) in mW.

the recorded heralding rate from the detection on the heralding
idler photon into SNSPD. At the same time, the corresponding
pump power (in mW) into the SPDC cavity is also depicted.
One can see clearly that our single-photon source demon-
strates g(2)(0) < 1/2 when the pump power is smaller than
10 mW, or with the heralding rate about 4000 kHz (4 MHz).
Note that due to different experimental runs, a slight jump in
the measured data below and above 2 MHz heralding rate is
recorded from the realignment of the setup.

In addition to the second-order correlation function, we
also perform the quantum-state tomography for the heralded
single-photon state with the homodyne detection scheme.
In Fig. 3(a), a typical time sequence of our noisy single-
photon source is demonstrated from our experimental raw
data measured from the oscilloscope. Our BHD output is then
integrated after convolution with a double-decayed (two time
constants) temporal mode function, along with a detection
correction treatment (in the reconstruction algorithm) that
assumes a detection efficiency of 92%, which is composed
of the quantum efficiency of photodiodes (99%), homodyne
visibility efficiency (96%), and the circuit noise of homodyne
detection (97%).

FIG. 3. (a) The time sequence of recorded BHD raw quadrature
data measured from the oscilloscope. Here, the SPDC pump power
is 3 mW. (b) The histogram of the corresponding probability density
distribution, pi (i = 1 . . . N). (c) With N = 50 inputs, a shallow neu-
ral network is applied to generate directly the predicted probability
for different photon numbers wn, with n = 0, 1, 2.

FIG. 4. Measured noise level in dB m of our BHD. Here, the
spectrum for dark noise is depicted in red color, up to 10 MHz.
When the local oscillator is operated at 30 mW, the spectrum of noise
level is depicted in blue color, illustrating a maximum clearance of
18.6 dB, along with a 3-dB bandwidth up to 7.45 MHz.

To make sure the measured noise level is not contaminated,
our homodyne detectors are designed with a high common
mode rejection ratio of more than 80 dB [53]. As shown in
Fig. 4, when the local oscillator is operated at 30 mW the spec-
trum of the noise level depicted in blue color demonstrates a
clearance of higher than 15 dB (with a maximum value of
18.6 dB). However, our BHD only supports a 3-dB bandwidth
up to 7.45 MHz.

In the following, by considering the limit in our BHD
bandwidth, we analyze the SPDC pump power up to 3 mW
(or the heralding rate lower than 2 MHz) on our Fock-state
tomography with machine learning. This operation condition
also reflects the scenario when the influence of vacuum signif-
icantly enters into the actual single-photon projection, denoted
as the low-intensity limit.

III. HISTOGRAM-BASED MACHINE-LEARNING
ENHANCED FOCK-STATE TOMOGRAPHY

Before introducing the histogram-based machine-learning
architecture, we conduct several tests on Fock-state tomogra-
phy by applying our previously developed convolution neural
network for quantum-state tomography with simulated raw
quadrature data [20]. As our goal is focusing on building a
lightweight inference system which can be embedded into
quantum optics experiments, working on raw quadrature data
needs much more computation effort in dealing with compli-
cated datasets. Instead, we construct histograms to reduce the
input data size, as well as the required computational cost.

To reconstruct the quantum state in our SPDC experiment,
the corresponding tomographic datum is the recorded event
from our homodyne measurement, i.e.,

p(X ) =
∞∑

n=0

wn
1

π1/22nn!
H2

n (X )e−X 2
, (1)

with the Hermite polynomial Hn(X ). Here, we already ex-
pand the probability probability distribution in Fock (photon

053705-3



HSIEN-YI HSIEH et al. PHYSICAL REVIEW A 110, 053705 (2024)

number) basis, with X being the value of the rotated quadra-
ture and wn being the photon number probability (weighting
factor). As the Fock states are independent of the quadrature
phase, we also apply the phase-average measurement [39–45]
to our homodyne data. Tomographic reconstruction here is to
estimate the photon number distributions wn from the mea-
sured quadrature data X .

By checking all the experimental data, we first set the
quadrature value between −3.2 and +3.2 as our range. Then,
we divide this closed interval [−3.2, 3.2] in the quadrature
into 50 subintervals (bins) [see Fig. 3(b)]. The relative fre-
quency of the ith bin is calculated by fi = Ni

N , with Ni denoting
the counts in the ith bin and N being the total counts in the
quadrature axis. We want to remark that in our numerical
experiments N = 50 bins (subintervals) are enough to achieve
good results.

The relative frequency of the ith bin, fi, is used to estimate
the value of probability density defined on sampled quadrature
values X̂i:

fi

�X
� pi(X̂i ), i = 1 . . . N. (2)

Here, �X is the length of each bin and X̂i is a specific point
in the ith bin. With a uniform grid on X , the estimated value
of probability density pi is illustrated in Fig. 3(b). After this
binning process, our tomographic problem now is transferred
to predict wn from the estimated value pi defined on the
discrete grid X̂i. When the number of input quadratures is large
enough, the relative frequency converges to the probability,
which enables a good approximated value of probability den-
sity pi. Otherwise, errors occur in the binning process.

Here, for the mock data, one can calculate the probability
density function p(x) of the quadrature for a given value of
wn, by using Eq. (1). Then, we divide the quadrature axis into
numerous bins and use the midpoint value of each quadra-
ture bin to compute the probability density value, obtaining
pi = p(xi ) for the training data, with i representing different
bins. Collecting different wn and their corresponding pi values
constitutes our training dataset.

Sets of more than 10 000 mock data on noisy single-photon
experiments are prepared, including different percentages of
single-photon and vacuum states [41–45]. We also explored
various model architectures to implement raw-data (quadra-
ture) based neural networks, and optimized the loss function
as low as possible. Subsequently, we use this test dataset
to evaluate the performance of these raw-data based neural
networks.

However, the inferred average fidelity on 10 000 samples
in these testing datasets is limited to 0.96 and even the input
dimensions are up to 10 000. One possible solution to improve
the fidelity is to apply advanced machine-learning architec-
tures or to perform complex hyper parameter adjustments.
These considerations also led us to adopt the histogram-based
method, aiming to develop a lightweight network with high
inference accuracy. The machine-learning model architecture
is designed and optimized for noisy squeezed states environ-
ments but trained on non-Gaussian data.

In Fig. 3(c), the schematic of this histogram-based neu-
ral network for Fock-state QST is illustrated. Here, we
apply a shallow neural network for 50 inputs from the

FIG. 5. (a) The measured probability density in the quadrature
(X ) from homodyne tomography data, with SPDC pump power at
3 mW. (b) The corresponding Wigner distribution function in the
phase space. Here, the fitting curve for the probability density (in
yellow color) is fitted by Eq. (4) with η = 0.631.

histogram-based inputs, i.e., the estimated values of quadra-
ture probability density pi. Our learning task is to build a map
supporting a multiple instance setting:

pi → wn. (3)

Then, the outputs can generate directly the predicted proba-
bility for different photon numbers wn.

To train our prediction map inferring different quantum
states from various tomographic data, we feed the machine
with well-prepared training dataset {pk

i ,w
k
n}. Here the index k

counts for different instances which describe specific quantum
states. In this learning task, we use a 10 000-data training
dataset (k = 10 000) and another 10 000 testing data with
different weighting values of w0, w1, and w2, i.e., vacuum,
single-photon, and two-photon Fock states, respectively. A
uniform distribution in [0, 1] is sampled. Furthermore, by con-
sidering the low-intensity condition in our SPDC experiments,
we let w0 + w1 + w2 = 1 without other multiphoton events.
With the simulated data as the ground truth, our histogram-
based neural network can ensure the average fidelity higher
than 0.999 with 10 000 instances in testing datasets.

In our Fock-state QST, we also remark that the predic-
tion map can be built only with a shallow neural network
[see Fig. 3(c)]. Additional hidden layers are not needed here.
We also perform the numerical test confirming that the neu-
ral network can maintain a good performance without any
introduction of nonlinear activation functions. In the training
process, we train ten epochs such that the mean-squared loss
of both training and testing data decreases to 10−7. The op-
timization process employs the ADAM optimizer with default
hyperparameter settings, including a learning rate of 0.01.

IV. RESULTS AND DISCUSSIONS

A. Photon number distribution

To verify the validity of our histogram-based QST, first we
compare directly with the measured probability density in the
quadrature (X ) from homodyne tomography data. As shown in
Fig. 5(a), with the SPDC pump power at 3 mW, the recorded
homodyne data illustrate clearly a non-Gaussian probability
distribution. By assuming the light field has the form

ρ = (1 − η)|0〉〈0| + η|1〉〈1|,
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FIG. 6. The predicted probability distribution generated from our
histogram-based QST from the same measured homodyne tomogra-
phy data shown in Fig. 5(a), with SPDC pump power at 3 mW. Here,
we have w0 = 0.363, w1 = 0.606, and w2 = 0.027, corresponding
to vacuum, single-photon, and two-photon Fock states, respectively.

as a noisy single-photon state |1〉 coupled to the vacuum |0〉,
with the weighting factor η [41], the corresponding probabil-
ity distribution function has the form

P(X ; η) =
√

2

π
[1 − η(1 − 4X 2)]e−2X 2

, (4)

which gives the best fitting curve depicted in yellow color
[see Fig. 5(a)], with η = 0.631.

With the Wigner transform, W[Ô](x, p) = ∫ ∞
−∞ dy O(x −

y
2 , x + y

2 ) e
i
h̄ py for a single-mode operator given in coordinate

representation 〈x − y|Ô|x + y〉 = O(x − y, x + y) [54,55], in
Fig. 5(b) we show the corresponding Wigner distribution
function in the phase space. A dip in the origin can be clearly
seen, representing the negativity in Wigner’s quasiprobability
distribution as a signature of single-photon Fock states.

In Fig. 6, with the same measured homodyne tomogra-
phy data shown in Fig. 5(a), i.e., the SPDC pump power
at 3 mW, we show the predicted probability distribution
generated from our histogram-based QST. Here, in addition
to vacuum state |0〉 and single-photon Fock state |1〉, we
also take possible two-photon Fock state |n = 2〉 into con-
sideration. The resulting photon number distribution gives
w0 = 0.363, w1 = 0.606, and w2 = 0.027, corresponding to
vacuum, single-photon, and two-photon Fock states, respec-
tively. The discrepancy between the direct fitting and our
histogram-based QST [see Figs. 5(a) and 6] comes from the
small portion in the two-photon Fock states.

As a benchmark, in Fig. 7 we also apply MLE method to
verify the experimental data at different SPDC pump power.
Here, both MLE and neural network generate a tiny value
for the three-photon Fock state, i.e., w3 < 10−13, confirming
that at most only up to w2 (corresponding to two-photon
Fock states) is non-negligible. With an increment in the
SPDC pump power, the coefficient w1 for single-photon Fock
states increases, while the coefficient w0 for vacuum states
decreases. As shown in Fig. 7, both approaches exhibit al-
most the same curve, thereby indicating the equivalence and

FIG. 7. Photon number distributions (w0, w1, and w2) vs dif-
ferent SPDC pump power, compared with two different methods:
maximum likelihood estimation (MLE) in circles and our histogram-
based neural network in squares. For the histogram-based neural
network, the input bin number is N = 50.

accuracy of these two estimations. To our surprise, at the same
time our SPDC process inside a cavity also produces a small
portion of two-photon Fock states, i.e., the average value of
w2 = 0.044 [41].

To avoid the overfitting problem in applying machine
learning, we start with the simplest single-layer shallow neural
network (only with 50 neurons). As we do not apply any
complicated structures, the only factor change in the shallow
neural network is the input size, which depends on how many
discrete points are taken for the quadrature probability density.
For the tests, we have increased the input size to 75 and
100, but the resulting fidelity generates 0.999 without showing
significant improvements.

We want to remark that using a finer discretization also
requires the increment in the number of input quadrature
points. Experimental quadrature points ranging from 8000 to
20 000 are tested. We apply the the mean-square error (MSE)
to compare the differences in inference results. All the tests
give MSE on the order of 10−4, indicating that the difference
in photon components is very small. Fidelity checks also show
no significant differences. As a comparison, we also apply
the convolutional neural network architecture developed for
squeezed states [20], to our single-photon experiments. How-
ever, the resulting fidelity can only achieve 0.95 due to the
intrinsic overfitting problem by applying Gaussian states to
map non-Gaussian Fock states. In other words, more data need
to be obtained in the experiment, which reduces the overall
tomographic reconstruction efficiency due to the speed of data
collection. In our single-photon experiment, even though we
only collected 8000 quadrature points, our current setting can
achieve the target, which is also verified with the maximum
likelihood estimation.

B. Direct parameter estimation

In addition to the photon number probability estimation,
our histogram-based neural network can also predict directly
the target parameters, without the reconstruction on the full
quantum state. Here, we focus on the negativity in Wigner’s
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FIG. 8. Negativity in the Wigner function, W (0, 0), vs differ-
ent SPDC pump power, compared with two different methods:
maximum likelihood estimation (MLE) in squares and and our
histogram-based neural network in squares. For MLE, W (0, 0) is
calculated after the reconstruction on the quantum state; the neural
network directly estimates W (0, 0) by Eq. (5) from the quadrature
histogram.

quasiprobability distribution, which manifests the most non-
classical signature of single-photon Fock states. Analytically,
the value in the origin of Wigner function W (0, 0) has the
form

W (0, 0) = 1

π

2∑
n=0

(−1)nwnLn(0), (5)

with the Laguerre polynomial Ln(x) [38]. In Fig. 8, we il-
lustrate the powerful feature in our histogram-based neural
network by directly inferring the negativity in the Wigner
function, W (0, 0), versus different SPDC pump power. Here,
we also compare the results generated from two different
methods: MLE-QST and our histogram-based neural network.
It is noted that in MLE, W (0, 0) is calculated after the re-
construction on the quantum state. Nevertheless, our neural
network directly estimates W (0, 0) directly by using Eq. (5)
from the quadrature histogram. As one can see, again, our
ML parameter estimation gives almost the same results as that
from MLE.

By considering SPDC experiments in the low-intensity
limit, the condition to have a negative value in W (0, 0) hap-
pens at w1 = 0.5, corresponding to our SPDC pump power
at 0.8 mW. As shown in Fig. 8, our histogram-based neural
network, also confirmed by MLE, precisely estimates the
negativity that happens when the SPDC pump power exceeds
0.8 mW.

As shown in Fig. 2, the value of g2(0) is smaller at low
pump power, as only the “click” signals are recorded in the
two detectors of the HBT interferometer. The vacuum states
are not recorded in the HBT interferometer. However, as we
reveal in Fig. 7, at low pump power, in our case below 3 mW,

there are always vacuum states (nonclick signals), which are
totally discarded in the g2(0) measurements. Only with the
quantum-state tomography, one can truly know the photon
number distributions.

Last but not least, due to the perfect agreement between
the results from MLE method and our histogram-based QST,
we choose 50 bins as a good estimation. Unlike MLE method
relying on the iteration algorithm, we can have a reusable
prediction map from our neural network. This lightweight
feature makes it easier to install such an inference function
on edge devices like FPGA [56]. Most of the time-consuming
task in our approach is the preprocessing, i.e., the histogram
binning process, which takes about 0.01 s. However, it only
takes about 3 ms to subsequently go through such a tiny
50×3 network for inference. The total time consumed is about
0.01+0.003 s.

V. CONCLUSION

In summary, we develop a neural-network-enhanced Fock-
state tomography and apply it to the heralding single-photon
source from the SPDC process experimentally. Instead of
tackling the raw quadrature data, which require a lot of com-
putational cost but infer a limited fidelity up to 0.96, our
histogram-based QST keeps the fidelity as high as 0.999.
Moreover, target parameters, such as the photon number dis-
tribution and the negativity in the Wigner function, can be
directly predicted, without dealing with the density matrix in
a higher-dimensional Hilbert space.

Through the validation with the experimentally measured
data acquired from the balanced homodyne detectors, perfect
agreement to the results obtained by MLE is also clearly
demonstrated. Compared to other methods to perform QST,
such as directly from the detector statistics [57–59] and
from the parity of the photon statistics [60,61], our machine-
learning enhanced QST can be easily installed on edge
devices such as FPGA as an in-line diagnostic toolbox for
all the possible applications with single photons. Moreover,
this fast and easy-to-install methodology helps us have a
better understanding on quantum optics experiments with
non-Gaussian states, such as two-photon Fock-state tomog-
raphy [49], photon-added squeezed states [50], tomographic
tests of Bell’s inequality [62], and the reconstruction of non-
classicality [63].
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