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Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks
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Based on the scattering cancellation, we provide a method not only making a nanoparticle nearly invisible,
but also hiding its interior region from the outside probing matter wave. By applying the interplay among the
nodal points of partial waves along with the concept of streamline in fluid dynamics for probability flux, a
quantum invisible cloak to the electron transport in a host semiconductor is demonstrated by simultaneously
guiding the probability flux outside a hidden region and keeping the total scattering cross section negligible.
As the probability flux vanishes in the interior region, one can embed any materials inside a multiple core-shell
nanoparticle without affecting physical observables from the outside. Our results reveal the possibility to design
a protection shield layer for fragile interior parts from the impact of transport electrons.
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I. INTRODUCTION

A transformation method, originally proposed to control
electromagnetic (EM) waves [1,2], has been applied to a broad
area of physical systems from acoustics [3], quantum matter
waves [4–7], fluid dynamics [8], and thermodynamics [9]. By
avoiding any scattering and preventing waves from entering
the interior region, invisible cloaking devices operating at
a specific frequency were realized experimentally for EM
waves with the fabrication of metamaterials [10]. However, for
matter waves, the application of a transformation method to a
spherical quantum object requires the corresponding effective
mass and potential being radially dependent in geometry,
resulting in an infinite value in the inner cloaking layer [4].

Instead of using functionally graded metamaterials, another
way to have a nearly invisible cloaking is achieved by the
scattering cancellation method, through the elimination of
major contributed scattered waves for the structures at the
subwavelength scale. Alú and Engheta demonstrated that in
the EM case, an object coated by isotropic and homogeneous
metamaterials or plasmonics can generate a pair of positive-
negative polarizations to diminish the electric dipole moment
[11,12]. Due to the similar mathematical structure between
the time-independent Schrödinger equation and Helmholtz
wave equation, a barrier-well potential formed in a core-shell
nanoparticle embedded in a host semiconductor is found to
become almost invisible for the transport electron matter
wave [13]. By simultaneously eliminating the scattered s

(monopole) and p (dipole) waves, a quantum cloak may be
realized in state-of-the-art solid state systems, such as quantum
dots, graphene, and thermoelectrics [14–16]. Furthermore, the
scattering cancellation method is a nonresonant mechanism
[17], making it possible to allow some tunable range for the
cloaking conditions.

Even though the core-shell nanoparticle is invisible from
not being detected by the conduction electrons with a typical
energy scale in semiconductors, the probability flux of the
matter wave still passes through the entire nanoparticle. In
this scenario, unless the required cloaking parameters of
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a delicate functional device matches well, a slight change
of physical parameters in the core region may result in a
severe degradation of the scattering cross section [18]. As
transformation optics demonstrates, an invisible cloak should
prevent fields from entering the region, as well as avoid any
scattering in the region around simultaneously. In order to hide
from the incident matter wave, to be invisible and cloaking at
the same time, in this paper we demonstrate the possibility to
make a nanosphere invisible as well as to guide the probability
flux outside the interior region, by applying the conservation
of probability flux as the streamline in fluid dynamics. To
guide the probability flux of quantum matter waves outside
the hidden region, a destructive interference between the
incoming and outgoing spherical traveling waves in the shell
region is required, resulting in the total internal reflection
at the core-shell interface. With our systematic approach to
guide the probability flux outside the core-region, even a
simple core-shell nontransparent object can be hidden from
the probing matter waves. With the introduction of above two
degrees of freedom, our method differs from the generalization
of known results on quantum invisible cloaks. Moreover, by
considering nanoparticles in the shape of a multiple core-shell
sphere, we reveal a quantum invisible cloak to the electron
transport in a host semiconductor, in which one can embed any
material inside the hidden region without affecting physical
observables from the outside. The robustness to hide any
material inside a protection region is also demonstrated in
a multilayer structure for a wide range of parameters.

II. CONDITIONS FOR BEING INVISIBLE AND HIDDEN
SIMULTANEOUSLY

As illustrated in Fig. 1, we begin with a spherical
nanoparticle, composed of two concentric layers of isotropic
and homogeneous materials (a core-shell structure), with a
different effective mass and potential energy defined in each
region. Consider an electron with the energy E, an effective
mass m0, and characteristic incident plane matter wave �i

propagating along the z axis. The corresponding wave number
outside the nanoparticle is defined as k0 = √

2m0(E − V0)/�,
where the potential energy in the background environment is
set to zero, V0 = 0. In the shell region, the effective mass
and potential are denoted by ms and Vs < 0, respectively,
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FIG. 1. (Color online) A nanoparticle with the core-shell struc-
ture is illustrated as our quantum invisible cloak, where a different
effective mass and potential energy are defined in each region,
respectively. The quantum matter plane wave for the transport electron
�i is assumed to propagate along the z axis.

with the corresponding wave number ks = √
2ms(E − Vs)/�;

while in the core region, the effective mass, potential,
and wave number are denoted as mc, Vc > 0, and kc =√

2mc(E − Vc)/�, respectively. Geometrical parameters for
the core-shell nanoparticle are the radius of the core, ac, and
the radius of the whole particle, a.

Following the partial wave analysis for a time-independent
nonrelativistic Schrödinger equation with an incident
plane wave �i [19], one can decompose the matter wave
solution outside the nanoparticle into �0(r,θ ) = �i + �scat =∑l=∞

l=0 il(2l + 1){jl(k0r) + ascat
l h

(1)
l (k0r)}Pl(cos θ ), with the

complex coefficient ascat
l for the scattering matter wave

�scat. By the same way, the corresponding wave solutions
in the shell and core regions have the form: �s(r,θ ) =∑l=∞

l=0 il(2l + 1){bljl(ksr) + clh
(1)
l (ksr)}Pl(cos θ ) and

�c(r,θ ) = ∑l=∞
l=0 il(2l + 1)dljl(kcr)Pl(cos θ ), respectively.

Here, bl , cl , and dl are the characteristic complex coefficients
for the infinite series of the partial waves in each region, with
jl , h

(1)
l , and Pl being the lth-order spherical Bessel function,

spherical Hankel function of the first kind, and Legendre
function, respectively. By matching the boundary conditions
at each boundary to satisfy the continuity of the wave function
and the conservation of probability flux in the radial direction
r , we can find the corresponding complex coefficients.

Based on the scattering cancellation method [11–13], we
assume that there exists a set of parameters to support an
invisible and hidden nanoparticle (this assumption should be
verified afterward). In this case, we have ascat

l = 0 for l =
0,1 and ascat

l ≈ 0 for l � 2 (its absolute value is smaller than
10−3). Then, under above approximation, the corresponding
coefficients bl and cl for the wave function in the shell region,
�s , can be found in a closed form,

b
app

l ≈ x2y1jl(x1)h(1)′
l (x2) − x1y2h

(1)
l (x2)j

′
l (x1)

x2y1jl(x2)h(1)′
l (x2) − x2y1h

(1)
l (x2)j

′
l (x2)

, (1)

c
app

l ≈ x1y2jl(x2)j
′
l (x1) − x2y1jl(x1)j

′
l (x2)

x2y1jl(x2)h(1)′
l (x2) − x2y1h

(1)
l (x2)j

′
l (x2)

, (2)

where the shorthanded notations used are j
′
l (x) ≡ djl(x)/dx,

h
(1)′
l (x) ≡ dh

(1)
l (x)/dx, x1 ≡ k0a, y1 ≡ m0a, x2 ≡ ksa, and

y2 ≡ msa. By transforming the shell wave function bases into
the pair of Hankel functions of the first and the second kinds,
h

(1)
l and h

(2)
l , the corresponding coefficients for the outgo-

ing and incoming waves are il(2l + 1)(bapp

l /2 + c
app

l ) and
il(2l + 1)bapp

l /2, respectively [19]. Moreover, the condition
|bapp

l /2 + c
app

l | = |bapp

l /2| is valid for any real parameters,
which means that each partial wave forms a kind of standing
wave in the shell region. With the above physical insights, we
look for a total internal reflection at the core-shell interface,
by imposing a destructive interference between the outgoing
and incoming spherical traveling waves. As the Goos-Hänchen
phase shift happens in the total internal reflection [20], here,
we look for the wave solution �s with a nodal point occurring
at the neighboring interface of the core-shell, in order to
form a hidden region. In other words, instead of finding the
separating nodal point for each partial wave inside the shell
region, to hide a nontransparent object our first condition
to be satisfied is to set the nodal points of �s penetrating
a little into the core region. Even though, the position of
this nodal point within the core region should be related to
the effective mass and potential, in the following we set this
nodal point as an additional degree of freedom, which is not
specified.

In addition, by the conservation of probability flux, one has
�� · �Jk = 0, where �Jk = (e�/mk) Im[�∗

k ��k], with mk and
�k corresponding to the effective mass and wave function in
each region (k = 0,s,c for the outside, shell, and core regions,
respectively) [21]. To have an invisible cloak to support a
hidden region, we assume that almost all of the probability
flux flows in the shell region, that is,∫ 2π

0

∫ a

ac

ẑ · �Js

(
r,θ = 1

2
π

)
rdrdφ = πa2 e�k0

m0
(1 − ε), (3)

where �Js is approximately orthogonal to the x-y plane at
the polar angle θ = π

2 . Here, an infinitesimal parameter ε

is introduced to measure the loss of total flux due to any
possible quantum tunneling effect that occurred at the potential
interfaces. In general, if ε is chosen too small, a higher barrier
potential for the core and a lower potential well for the shell
is required. Our numerical results reveal that the value of ε

can be chosen with an arbitrarily small value, but to have a
practical parameter set, in the following, we set ε = 0.06 as an
illustration. Basically, as is the case in fluid dynamics, Eq. (3)
enforces the streamline of the probability flux to flow in the
shell region.

For a given geometrical structure, the size parameters a

and ac are given. Then, with the introduction of these two
additional conditions: to seek a nodal point for the wave
solution �s penetrating into the core region due to the total
internal reflection, and to have a conserved probability flux
in the shell region, it is sufficient to determine two physical
parameters in the shell region. In Fig. 2(a), we report the
parameter set {ms,Vs} to support a quantum invisible cloak
numerically for the wave function in the shell region �s with a
nodal point within the core region, |�s(rn)| = 0 at rn < ac.
The found wave function in the shell region is shown in
Fig. 2(c), with the comparison to the decomposed channel
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FIG. 2. (Color online) (a) The parameter set {ms,Vs} to support a
total internal reflection for the wave function in the shell region, �s ;
and (b) the corresponding parameter set {mc,Vc}, marked in numbers,
to simultaneously generate a negligible total normalized scattering
cross section, as small as 10−4. (c) The probability amplitude of
wave functions inside the barrier-well potential, as a function of the
radial axis r , are shown for |�c| and |�s | in black and red colors,
respectively. Decomposed channel functions fl , l = 0,1,2, are also
shown as a comparison. Moreover, dashed lines in the barrier region
show the extension of wave functions from the shell (potential well)
region, all of which have a common nodal point. The parameter
set {ms,Vs,mc,Vc} used in (c) is {0.182me, −1.91 eV, 0.1901me,
6.368 eV}, with the geometric size parameters of our nanoparticle:
a = 2 and ac = 1.7 nm. The energy and effective mass for the
transport electron are E = 0.01 eV and m0 = 0.8me (in unit of the
electron mass me), respectively.

function defined as fl(r,θ = 0) = il(2l + 1){bljl(ksr) +
clh

(1)
l (ksr)}Pl(cos θ ), for different l. As shown in Fig. 2(c),

the contribution from higher-order terms of partial waves are
significantly small enough as expected. Moreover, such a
nodal point penetrates into the core region because of wave
tunneling, as in the case of a Goos-Hänchen phase shift
in the total internal reflection. Since we have a spherical
symmetry in geometry, the requirement to have a nodal point
solution for all the polar angle θ values results in guiding the
probability flux to flow in the shell region with a nontrivial
solution.

Then, with the set of solutions {ms,Vs} found in Fig. 2(a),
we search for the corresponding set of parameters {mc,Vc}
by coming back to the concept of scattering cancellation
[11–13]. The scattering cross section outside the particle
has the form σ = 4π

k2
0

∑l=∞
l=0 (2l + 1)|ascat

l |2, with the complex

scattering coefficient ascat
l defined as

ascat
l = − x1j

′
l (x1)[Al + Bl] + y1jl(x1)[Cl + Dl]

x1h
′
l(x1)[Al + Bl] + y1hl(x1)[Cl + Dl]

, (4)

where

Al = y2x3y4jl(x4)[jl(x2)h
′
l(x3) − hl(x2)j

′
l (x3)], (5)

Bl = y2y3x4j
′
l (x4)[hl(x2)jl(x3) − jl(x2)hl(x3)], (6)

Cl = x2x3y4jl(x4)[h
′
l(x2)j

′
l (x3) − h

′
l(x3)j

′
l (x2)], (7)

Dl = x2y3x4j
′
l (x4)[j

′
l (x2)hl(x3) − h

′
l(x2)jl(x3)]. (8)

Here, the shorthanded notations used are x3 ≡ ksac, x4 ≡ kcac,
y3 ≡ msac, and y4 ≡ mcac.

Based on Eq. (4), the set of parameters {mc,Vc} found to
support an invisible cloak is shown in Fig. 2(b), with the
one-to-one corresponding markers to the set of parameters
{ms,Vs} shown in Fig. 2(a), which confine the probability
flux in the shell region simultaneously. By our proposed
method, the parameter set {ms,Vs,mc,Vc} generates a quantum
invisible cloak to hide a nontransparent object, which support
almost zero values both for the total scattering cross section
and probability flux in the core region simultaneously. As a
comparison, in Figs. 3(a) and 3(b), we use the parameters
reported in Ref. [13] to demonstrate the known results on
a quantum invisible cloak. Even though this nanoparticle is
invisible as shown in Fig. 3(a), but the probability flux goes
through the entire object as shown in Fig. 3(b). In this scenario,
a slight change of physical parameters in the interior region
may result in a severe degradation of the scattering cross
section [14].

Instead, in Figs. 3(c) and 3(d), we plot the distributions
of probability density and probability flux, respectively, for
hiding a nontransparent object by our systematical approach.
With the parameters shown in Fig. 2(c), it can be seen that
almost all the probability flux circulates along the boundary
of the barrier-well potential, while inside the core region
the probability flux is almost zero. The comparison between
Figs. 3(b) and 3(d) clearly demonstrates the difference between
our method and others. Take the simulation shown in Figs. 3(c)
and 3(d) as an example; the probability to find the matter wave
inside the core region is as small as 10−5 at r = 0.5ac and
about 10−7 at r = 0, while the total normalized scattering cross
section is kept negligible at 10−4. We want to remark that in
the calculations, we do not restrict ourselves by truncating
the infinite series for the scattering cross section and the
corresponding probability flux. Instead, we calculate as many
as possible terms to satisfy the conditions that the value of
each term is smaller than 10−5.

III. DISCUSSION ON THE EXISTENCE
OF A HIDDEN REGION

Since in our proposed method the nodal point of the wave
function is chosen to be located outside the shell region, a
little amount of the probability flux still penetrate into the
core region, about επa2e�k0/m0. In this case, for a simple
barrier-well potential only, we can not take this core region
as an ideal hidden region. To hide the interior perfectly, we
extend our method for a nanoparticle in the shape of multiple
core-shell spheres. Take a three-layer potential as an example;
now, it is possible to construct a hidden interior region for
ah < ac, where ah is the radius of the interior hidden region.
If the thickness of the core region is thin, as expected, a
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FIG. 3. (Color online) (a) Probability density |�|2, and (b) the
corresponding probability flux �J of the wave function in the plane
x = 0 for a quantum invisible cloak, with the parameters reported
in Ref. [13]. Even though this nanoparticle is invisible as shown
in (a), but from (b) it can be seen that the probability flux goes
through the entire object. Instead, (c) and (d) show the probability
density and the corresponding probability flux, respectively, for
hiding a nontransparent object, with the same parameter set used in
Fig. 2(c). In this simulation, the probability inside the core region
is calculated as small as 10−7, while near the interface of the
core-shell, a probability flux is generated to satisfy the conservation
of probability flux. Moreover, a three-layer nanoparticle as a quantum
invisible cloak is demonstrated in (e) and (f), with the corresponding
probability density and flux, respectively. Here, the parameters used
are a = 2, ac = 1.7, ah = 0.68 nm, m0 = 0.8me, ms = 0.182me,
mc = 0.19me, mh = 0.5me, Vs = −1.91, Vc = 6.368, Vh = −20,
and E = 0.01 eV, respectively.

change of any parameter in the hidden region would modify
the scattering properties in the outside. Instead, if the thickness

is thick enough to exclude the quantum tunneling effect, then
the total scattering cross section remains nearly unchanged
no matter what kind of material is placed inside the interior
region, as shown in Figs. 3(e) and 3(f). Moreover, within such
a hidden region, we test a wide range of parameters for the
object embedded inside. For the effective mass as large as
10me (mh = [0,10me]) and the effective potential in the hidden
region from −30 to +30 eV, the corresponding scattering cross
section remains unchanged. This result implies that our hidden
region in a three-layer structure is indeed strongly robust even
with such an extreme set of parameters.

Before our conclusion, we want to remark that a one-
dimensional (1D) configuration is known for not being able
to provide the transmission resonance (invisible) and shield
(cloaking) simultaneously. In our approach, a potential well is
chosen to create a region with a high probability flux, in order
to compensate for the forbidden flow in the hidden region. Our
results may remind people that the generalization of concepts
about the bound states in the antiresonance from 1D to higher
dimensions should be revisited. This is very important for
the future study on the scattering in nanoscales. Moreover, in
the typical scattering cancellation method, the values of ksa

and kcac are small enough in each layer to approximate the
quasistatic limit. This limit is equivalent to the solution of
Laplace equation in the electrostatics potential [22]. We want
to remark that, in our case, to support a negligible scattering
cross section, we follow the guideline that k0a < 1 outside the
nanoparticle, but have |ksa| = 6.06 and |kca| = 11.27, in the
shell and core regions, respectively, both of which are greater
than 1.

IV. CONCLUSIONS

In conclusion, we introduce two more degrees of freedom
to construct a quantum invisible cloak, by requiring the total
internal reflection and the conservation of probability flux
in the shell region. Solutions of wave function in the shell
region are required to have a nodal point penetrating into
the core region, resulting in guiding the probability flux only
circulating in the shell region. With our approach, one can
embed any material inside the hidden region without disturbing
the probing matter wave from the outside. Our results provide
a systematical way to hide nontransparent objects at the
subwavelength scale. In this scenario, we do not need to worry
about the design for cloaking different objects. Moreover,
this hidden region can also provide a protective shield for
some sensitive or easily corrupted devices from the impact of
transport electrons. With the analogy between quantum matter
waves and classical waves, the concept of our method can be
readily applied in other fields, such as electromagnetic and
acoustic systems, etc.
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