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Bender et al. [Phys. Rev. Lett. 80, 5243 (1998)] have developed PT -symmetric quantum theory as an
extension of quantum theory to non-Hermitian Hamiltonians. We show that when this model has a local
PT symmetry acting on composite systems, it violates the nonsignaling principle of relativity. Since
the case of global PT symmetry is known to reduce to standard quantum mechanics A. Mostafazadeh
[J. Math. Phys. 43, 205 (2001)], this shows that the PT -symmetric theory is either a trivial extension or
likely false as a fundamental theory.
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The Hermiticity of Hamiltonians—and indeed observ-
ables in general—is one of the fundamental postulates of
quantum mechanics. There are two reasons for this restric-
tion: First, a Hermitian Hamiltonian guarantees that the
energy of the physical system described by it is always real;
second, based on the Schrödinger equation, the Hermiticity
implies that the time-evolution operator generated by a
Hamiltonian is unitary, which ensures conservation of
probabilities for the time-evolved quantum state.
Nonetheless, non-Hermitian Hamiltonians are still useful

in theoretical work, and they are a mathematical tool for
studying open quantum systems in nuclear physics [1] or
quantum optics [2], among others. In these fields, the whole
physical system is still considered to obey conventional
quantum mechanics, and the non-Hermitian Hamiltonian
only comes out as an effective subsystem within a projec-
tive subspace.
In 1998, Bender and colleagues proposed a class of non-

Hermitian Hamiltonians with a real energy spectrum as a
fundamental, noneffective model beyond standard quantum
theory [3]. By redefining the inner product, the time-
evolution operator generated by such a Hamiltonian could
be unitary [4]. Their proposal reveals the possibility to
remove the restriction of Hamiltonians from Hermiticity to
a weaker parity-time (PT ) symmetry, where parity-time
means spatial reflection and time reversal. In other words,
it might be possible to have a physical system described by
a non-Hermitian Hamiltonian. They showed that when the
eigenstates of a PT -symmetric system are also PT sym-
metric, the energy eigenvalues are always real. When the
eigenstates are no longerPT symmetric, the energybecomes
complex and is called spontaneous (PT ) symmetrybreaking.
This proposal led to a flurry of activity investigating

the strange properties of PT -symmetric Hamiltonians.
Especially in optical systems, since the paraxial equation

is equivalent to Schrödinger’s equation, the connection
with a gain-loss optical systems [5], as well as various
effective models, was proposed to simulate PT -symmetric
Hamiltonian dynamics [6]. A PT -symmetric Hamiltonian
was successfully simulated in optics experiments by using
coupling optical channels, and the spontaneous breaking
of PT symmetry was also observed in this system [7].
Besides these discoveries, many optical applications of
PT -symmetric Hamiltonians were also proposed, such as
unidirectional optical valves [8], perfect laser absorbers [9],
unidirectional invisible media [10], and spatial optical
switches [11]. These applications are all classical and, to the
extent that they are realized, are effective models. However,
in the quantum regime Bender and others proposed two
interesting applications related to quantum computation:
ultrafast quantum state transformation [12] and quantum
state discrimination with single-shot measurement [13],
which also inspired much investigation of “shortcut” quan-
tum time evolution [14,15].
It is well known that in conventional quantum mechanics

the time to evolve between two orthogonal states is limited
by the uncertainty principle [16,17], and only orthogonal
states can be distinguished perfectly with a single-copy
measurement [18]. Both of these limitations are entirely
absent in PT -symmetric quantum theory because the
following two assumptions are built into it: (1) There exists
a quantum system described locally by a PT -symmetric
Hamiltonian, and it can coexist with a conventional
quantum system. (2) Post-measurement probability distri-
butions are computed using conventionally normalized
quantum states.
Here, local PT symmetry means that certain subsystems

are PT symmetric while others, in general, are not, and the
Hamiltonian completely describes the subsystems without
any conditional dependence on the other (conventional)
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subsystems; global PT symmetry means that all subsys-
tems are PT symmetric [19]. These two assumptions
are implicitly made in Refs. [12,13] and present a clear
departure from standard quantum mechanics, but so far
they have not been tested. The existing experimental
realizations of PT -symmetric evolutions are either
classical simulations or conditioned evolution in conven-
tional quantum theory [7,20]. Moreover, some theoretical
scrutiny has shown that a globally PT -symmetric system is
conventional quantum mechanics in disguise with a differ-
ent inner product definition, and in finite-dimensional
systems, PT -symmetric Hamiltonians are actually a spe-
cific class of pseudo-Hermitian Hamiltonians in one-to-one
correspondence with Hermitian Hamiltonians via a sim-
ilarity transformation [21]. This equivalence indicates that
if PT -symmetric quantum symmetry can only describe
physical systems globally, then it would be unnecessary
for us to consider this theory except for potentially
simplifying calculations. From this point of view, whether
PT -symmetric quantum theory is a valid local theory
becomes a significant question.
Although PT -symmetric systems satisfy the require-

ments of a real energy spectrum bounded from below as
well as probability conservation, they still must satisfy
other physical limitations. Here we examine assumptions
1 and 2 using the no-signaling conditions from special
relativity: ∀b, B, A�,

X

a

Pða; bjAþ; BÞ ¼
X

a

Pða; bjA−; BÞ ¼ PðbjBÞ; (1)

where a, b are measurement outcomes of two spacelike
separated parties Alice and Bob, and A� and B are different
local measurements done by Alice and Bob on their
respective sides. The meaning of Eq. (1) is that Bob’s
probability distribution over local measurement outcomes
is unaffected by Alice’s choice of local measurements.
The main result of this paper is that any locally PT -

symmetric system will, in general, violate Eq. (1) if both
assumptions 1 and 2 are true. This greatly restricts the realm
of interest for this theory to a curious form of effective
theory, unless the astonishing and highly unlikely possibil-
ity of superluminal communication is realized.
PT -symmetric Hamiltonians.—A HamiltonianH is PT

symmetric if it commutes with the parity P and time-
reversal T operators. In a two-level system, P is defined
by the Pauli σx matrix and T is defined by complex
conjugation; a nontrivial example of a PT -symmetric
Hamiltonian is

H ¼ s

�
i sin α 1

1 −i sin α
�
; s; α ∈ R; (2)

where s is a scaling constant and α is called the non-
Hermiticity of H [19]. When α ¼ 0, H is a Hermitian

Hamiltonian. The (right) eigenvalues, E� ¼ �s cos α,
are real when jαj < π=2, corresponding to the (right)
eigenstates

jEþðαÞi ¼
eiα=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos α

p
�

1

e−iα

�
;

jE−ðαÞi ¼
ie−iα=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos α

p
�

1

−eiα
�
:

These states are not orthogonal to each other in conven-
tional quantum theory. When α ¼ �π=2, they become the
same state, and this is the PT symmetry-breaking point.
The time-evolution operator for such a system is given

by, following Ref. [12],

UðtÞ≡ e−itH ¼ 1

cos α

�
cosðt0 − αÞ −i sin t0
−i sin t0 cosðt0 þ αÞ

�
;

where t0 ≡ ðΔE=2Þt, ΔE ¼ Eþ − E−, and ℏ ¼ 1.
Violation of no-signaling condition.—Suppose that two

spacelike separated parties, Alice and Bob, want to transmit
information without using any classical communication.
They are permitted to discuss their communication protocol
and share a maximally entangled state jψi ¼ ð1= ffiffiffi

2
p Þ

ðj þx þxi þ j −x −xiÞ beforehand, where j�ki are eigen-
states of the Pauli matrices σk, k ∈ fx; y; zg. If Alice has a
locally PT -symmetric quantum system H and it does
not interact with any subsystem on Bob’s side, then the
total Hamiltonian describing the composite system is
Htot ¼ H ⊗ I, where I is the identity operator. This pre-
scription also holds in PT -symmetric systems because the
identity operator keeps the same form in both kinds of
quantum theory. According to the process of the gedanken
experiment in Ref. [12] and the previous two assumptions, if
Alice first uses the operator Aþ ¼ I or A− ¼ σx with respect
to the information she wants to send and sets the time of
evolution to τ ¼ π=ΔE, the joint final states are

jψ�
f i ¼ ½UðτÞA� ⊗ e−iItI�jψi

∝
1ffiffiffi
2

p
�
eiϕþ

�
1

ie−iϵ

�
jþxi � eiϕ−

�
1

ieiϵ

�
j−xi

�
;

where eiϕ� ¼ðsinα∓ i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin2α

p
Þ and eiϵ ¼ ð−2 sin αþ

icos2α=1þ sin2αÞ. Here we note that the normalization
constants have been renormalized in theway of conventional
quantum mechanics since in the end Bob will measure his
system using conventional quantum mechanics. In the
extreme case that α → −π=2, the respective states that
Bob holds are ρ�B ¼ j�yih�yj, and thus Bob can learn the
information Alice wants to transmit.
In fact, this result continues to hold for all α that yield a

non-Hermitian H. Following the previous protocol, Alice
and Bob both measure their systems with the conventional
quantum projectors j�yih�yj, giving the joint probabilities
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Pða; bjA�; BÞ ¼ hψ�
f jðjaihaj ⊗ jbihbjÞjψ�

f i;

where the possible outcomes of a and b are þy or −y.
After a simple calculation, we have the two marginal
probabilities

X

a¼�y

Pða;þyjA�; BÞ ¼
1

2
½1� cos ϵ sinð2ϕþ − ϵÞ�:

The two equations are the same only when cos ϵ ¼ 0,
which implies that the no-signaling condition is always
violated unless α ¼ nπ; i.e., the system used by Alice is
Hermitian.
Discussion.—We have demonstrated that the two

assumptions made for accomplishing ultrafast quantum
processes and discrimination of nonorthogonal states
will lead to the violation of the no-signaling condition.
This violation happens not only for the Hamiltonian H in
Eq. (2), but for all 2 × 2 (nontrivial) PT -symmetric
Hamiltonians with even time-reversal symmetry T 2 ¼ þ1,
which follows by a suitable unitary transformation on H.
By a simple embedding argument, any nontrivial PT -
symmetric H of higher dimensions will also violate no
signaling, so the result is quite general.
Our result seems to lead PT -symmetric quantum theory

into the following trichotomy of possible situations:
(a) The first assumption is incorrect. PT -symmetric

Hamiltonians are not local and the model of PT -symmetric
quantum theory does not completely describe a real
physical system, or it cannot be regarded as a real physical
system.
(b) The first assumption is true, but the second

assumption is incorrect. Thus, the rules describing how
the standard and PT -symmetric theories transition
between each other must be modified to avoid superluminal
signaling. To our knowledge, two ways are known to
establish a one-to-one transformation between the states in
the standard frame and in the PT frame. The first one is our
second assumption, and the second one is the similarity
transformation discovered by Mostafazadeh [21]. However,
the first way, as we have already shown, will violate the
no-signaling condition, and the second way makes ultrafast
time evolution and discrimination of nonorthogonal quan-
tum states impossible, essentially reducing it to standard
quantum mechanics. Furthermore, this transition theory
should include the interactions between two separated
parties; otherwise, the violation of the no-signaling con-
dition cannot be explained since all the operations in Fig. 1
are local.
(c) Both assumptions are true, and PT -symmetric

systems give us the ability to perform all of these powerful
applications, including superluminal signaling. However,
this situation seems to be by far the most unlikely one.
The central problem with local PT -symmetric

theories [generously assuming scenario (b)] is that the

renormalization caused by the transition between two
different systems is a nonlinear map, which would cause
superluminal signaling [22] and, in general, other highly
implausible scenarios such as solving #P problems in
polynomial time [23]. Even preparing quantum states is
nontrivial in these theories [22]. In fact, our conclusions
persist if we normalize in the PT -symmetric inner product
instead since the nonlinearity comes from the relative
distortion of the state space between the two theories.
Nonlinear quantum theory has been debated for a long time
[24], and the possibility of nonlinear time evolution is not
completely ruled out. Although sometimes these symptoms
can be ameliorated [25], it seems that the medicine of
additional assumptions is worse than the original ailment.
Finally, while in our view these results essentially

destroy any hope of PT -symmetric quantum theory as a
fundamental theory of nature, it could still be useful as an
effective model or as a purely mathematical problem-
solving device.
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