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Abstract
We study the eigen-energy and eigen-function of a quantumparticle acquiring the probability
density-dependent effectivemass (DDEM) in harmonic oscillators. Instead of discrete eigen-energies,
continuous energy spectra are revealed due to the introduction of a nonlinear effectivemass.
Analytically, wemap this problem into an infinite discrete dynamical system and obtain the stationary
solutions in theweak density approximation, alongwith the proof on themonotonicity in the
perturbed eigen-energies. Numerical results not only give agreement to the asymptotic solutions
stemmed from the expansion ofHermite-Gaussian functions, but also unveil a family of peakon-like
solutionswithout linear counterparts. As nonlinear Schrödinger wave equation has served as an
importantmodel equation in various sub-fields in physics, our proposed generalized quantum
harmonic oscillator opens an unexplored area for quantumparticles with nonlinear effectivemasses.

1. Introduction

Quantumharmonic oscillator is themost importantmodel system in quantummechanics, which remarkably
exhibits an exact, analytical solutionwith discrete (quantized) eigen-energies compared to the predictions of
classical counterparts [1]. Insteadwith a givenmass,m0, when particles (electrons or holes)move inside a
periodic potential or interact with other identical particles, theirmotions differ from those in a vacuum,
resulting in an effectivemass [2].With an effectivemass, denoted asm*, the corresponding Schrödinger equation
for a quantumparticle in a one-dimensional harmonic oscillator, characterized by the spring constant k, has the
form:
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HereΨ(x, t) is the probability amplitude function projected in the spatial coordinate. In particular, with a
nonuniform composition in potential or particle distributions, a position-dependent effectivemass (PDEM)
Schrödinger equation has gainedmuch interest for its applications from semiconductors to quantumfluids
[3–7]. Recently, a PDEMSchrödinger equation exhibiting a similar position-dependence for both the potential
andmasswas exactly solved [8].Moreover, by taking the one-sitemass in theHaldanemodel realized in the
optical lattices, one can have similar nonlinearmasses, depending on the local intensity, in the nonlinear coupled
waveguide arrays for the studies on the optical isolationwith nonlinear topological photonics [9].

On the other hand, it is noteworthy that equation (1) is lack ofGalilean invariance, but the position-
dependent effectivemassHamiltonian is by nomeans unique [3]. Although it is worth to construct a consistent
model equation toGalilean invariancewith probability density dependent effectivemass, with the
correspondence between Schrödinger equation and the paraxial wave equation, similar concept of position-
dependent effects is also studied in the dispersionmanagement optical fiber link [10].Moreover, in addition to
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position-dependence, chromatic dispersionmay also have intensity-dependent dispersion (IDD) in the optical
domains [11, 12]. IDD, or in general the nonlinear corrections to the chromatic dispersion as a function of the
wave intensity, has arisen in a variety of wave phenomena, such as shallowwater waves [13, 14], acoustic waves in
micro-inhomogeneousmedia [15], ultrafast coherent pulses in quantumwell waveguide structures [16], the
saturation of atomic-level population [17], electromagnetically-induced transparency in a chain-Λ
configuration [18], or nonlocal nonlinearitymediated by dipole-dipole interactions [19]. Inspired by IDD, in
this work, we consider a quantumparticle acquiring an probability density-dependent effectivemass (DDEM),
i.e.,m*(|Ψ|2), in a harmonic potential described by the following generalized Schrödinger equation:
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Here, theDDEM is approximated in theweak density condition by assuming b|Ψ|2< 1. Then, we have
[ (∣ ∣ )] [ ( ∣ ∣ )] [ ] ( ∣ ∣ )Y º - Y » + Y- - -*m m b m b1 12 1

0
2 1

0
1 2 , with the parameter b denoting the contribution

from the nonlinear effectivemass term. As one can see, when the nonlinear effectivemass term is zero, i.e., b= 0,
equation (2) is reduced to thewell-known scenario for a quantumparticle in a parabolic potential. Besides,
optical waves IDD in theGradient-index (GRIN) lenses [20] also share the samemodel equation described in
equation (2)whenwe consider wave propagation along the z-coordinate (by replacing t by z), alongwith a
confined transverse dimension denoted by x.

When k= 0, even though an approximated solutionwith a non-physical peak value 1012 was illustrated in
Ref. [11] for b< 0, it is proved rigorously that localized solitons exist only for b> 0 in Ref. [12]. However, with
the supported harmonic potential, the scenarios can be totally different. In terms of solitons, the interplay
between nonlinearity and harmonic potential has been studied for a long time [21]. Nevertheless, such localized
solutions supported onlywith a nonlinear effectivemass is never studied.Moreover, in theweak density
approximation, equation (2) also shares the samemathematical form to the Salernomodel in the continuum
limit, which can be derived as a quantummodified discrete nonlinear Schrödinger equation, giving the time
evolution of thefield amplitude on the lattice [22–24].Without considering any nonlinear potential but only
with the nonlinear effectivemass differs our results from the knownones.

However, when b≠ 0, instead of the discrete energies, continuous energy spectra are revealed due to the
introduction of a nonlinear effectivemass. Analytical solutions for the corresponding eigen-energy and eigen-
function are derived by expanding the solutions in theweak density, i.e., b|Ψ|2. Numerical solutions obtained by
directly solving equation (2) give good agreement to the analytical ones obtained from the expansion of
Hermite-Gaussian functions.Moreover, we unveil a family of peakon-like solutions supported byDDEM,
which has no counterpart in the linear limit. Our perturbed solutions and numerical results for this generalized
quantumharmonic oscillator with nonlinear effectivemasses opens an unexplored area for quantumparticles.

The paper is organized as follows: in Session II, we introduce the quantumharmonic oscillator into this
generalized Schrödinger equationwith nonlinear effectivemass and reduce equation (2) into an infinite
dynamical system. Then, by expanding b|Ψ|2 andwith the help of the eigen-solutions of quantumharmonic
oscillator, we study the corresponding eigen-energy with the introduction ofDDEM, as a function of the
parameter b. Themonotonicity of the perturbed eigen-energy is also proved. In section 3, explicitly, we derive
the analytical solutions of eigen-energies and the correspondingwavefunctions for the ground and second-oder
excited states in the asymptotical limit. The comparison between analytical solutions and numerical results is
illustrated in section 4, demonstrating good agreement on the solutionswith a smooth profile, stemmed from
the expansion ofHermite-Gaussianwavefunctions. A new family of peakon-like solutions with a discontinuity
in itsfirst-order derivative is also unveiled, which has no linear counterparts. Finally, we summarize this work
with some perspectives inConclusion.

2.Quantumharmonic oscillator withDDEM

Without loss of generality, in the following, we set ÿ= 1, k> 0,m0= 1 for the simplicity in tackling equation (2).
Here, by lookin for the stationary solutionsΨ(x, t)= ψ(x)e− iE t, we consider a family of differential equations
parametrized by a continuousDDEMparameter b≠ 0 of the form
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where E is the corresponding eigen-energy, x denotes a real variable for the coordinate, andψ(x) is a square
integrable function. This stationary Schrödinger wave equation can be seen as a generalized quantumharmonic
oscillator. In addition to the stationary states considered here, this generalized nonlinear Schröoedinger
equation is expected to provide an interesting platform,with non-stationary states, for further studies on the
infinite dynamical system.

2
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When b= 0, equation (3) becomes thewell-known equation for the quantumharmonic oscillator, which
supports eigen-function of the n-th order excited state in the position representation reads [25]:

( ) ( ) ( )f m= -x k e H k x , 4n n
k x

n
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where ( ! )m p= -n2n
n 1 2 andHn(x) is the n-th orderHermite polynomial. The corresponding eigen-values are

equal to ( )= +E k nn
1

2
, for any În .We are interested infinding pairs ( )y E,n n b fulfilling equation (3) for

a set b≠ 0.

2.1. Expanding the eigen-energies and eigen-functionswith b|Ψ|2

To investigate equation (2)with b≠ 0 (but keeping k≠ 1first), we look for the solutions based on the expansion
of the solution on the eigen-functionfn(x). That is,
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Here, B̄n means the complex conjugate ofBn. Then, bymultiplying equation (6)withfm(x) and using the
orthonormal property offm(x), we obtain
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whereVm,n,p,q, andWm,n,p,q are defined as:
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As one can see from equation (7), we reduce the original partial differential equation into the infinite discrete
dynamical system [26].With the help of the recursive relation ofHermite polynomialHm(x), for example see
Ref. [25], i.e., x2Hm(x)=m(m− 1)Hm−2(x)+ (m+ 1/2)Hm(x)+ 1/4Hm+2(x), one can arrive at
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Now,we look for the stationary solution in the form:
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Fromnowon, for simplicity, we assume k= 1.With the help of equation (10), next, we consider the
perturbation on the energy deviated from the eigen-energy Enwith the correspondingHermite-Gaussian eigen-
modefn(x).
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Similar to themethodology used in dealingwith the nonlinearmeanfield in theGross–Pitaevskii equation
(GPE) [27, 28], we substitute ( ) ( ) ( )y f=x E P E x; with ( ) f =x 1 into equation (3), where

( ) = å =
¥P E Bn n0 from (9), and arrive at a nonlinear eigen-energy equation:
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Once again, in equation (11), we can see that ifP(E)→ 0, then the resulting eigen-energy  = +E E nn
1

2
.

By substitutingf(x), obtained from equation (10), into equation (11), one can have the relation between E and
P(E)near = +E nn

1

2
. In general, the perturbation approach illustrated aboveworks for all the values of n.

However, only when n is even, a neat formula can be conducted by taking the advantage of symmetric
wavefunctions inψ(x). For even numbers, 2n, the resulting eigen-energy E due to the introduction of theDDEM
parameter b can be approximated as
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To compute the integrals shown in equation (12), one can utilize the Feldheim identity for theHermite
polynomials [25]:
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( ) ( ) ( )

( )

ò

p= G + + -

´ G + + - G + + -

-¥

¥ -

- + + -

e H x H x H x dx

n p m

m p n m n p

2
1

2
1

2

1

2
, 14

x
m n p

m n p

2
2 2 2

1 1 2

2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where n+ p�m,m+ p� n andm+ n� p; otherwise, the integral is zero. From equations (13) and (14), a
direct calculation can yield
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2.2.Monotonicity in the perturbed eigen-energy
Given b> 0 (b< 0), to ensure solutionswith linear limit ( ) ( ) ( )y f»x E P E x; n to exist only if

= +E E nn
1

2
 ( = +E E nn

1

2
 ), we prove that the two integrals inside the square brackets in equation (12)

ismonotonic, i.e.,
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or equivalently
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for n� 0. InAppendix, the proof on themonotonicity for equation (16) and equation (17) is given in details.
By using the upper and lower solutionmethod developed in the variational calculus [27], we can further

prove the existence of a positive solution (node-less state) through the corresponding Lagrangian for
equation (2), i.e.,
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. Here, we also introduce the probability factor Q for this

quantumharmonic oscillator withDDEM, by defining
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As the original generalized Schrödinger equation given in equation (2)preserves theU(1) symmetry, i.e.,
[ ]y q y iexp , the conserved density for thismodel equation can be derived fromNoether theorem [30]. It is
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which is reduced to the standard definition of probability for quantumwavefunctions. For b→ 0, the
corresponding Lagrangian density given in equation (18), as well as the conserved density given in equation (20),
both go to |ψ|2.

These two terms,Z(E) andQ(E), shown in equation (19), correspond to the Lagrangian of our generalized
harmonic oscillator and the conserved quantity, respectively. As theDDEMparameter b→ 0, the Lagrangian
shown in equation (19) can be reduced to
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which is the Lagrangian for the linear equation, i.e., y y y- + =x Exx
k1

2 2
2 . By following the same concept in

tacklingweak non-linearity [31], the perturbation based on the expansion of theHermite-Gaussian functions to
deal with theDDEMensures thatwhen E→ En, one hasQ(E)→ 0.

3. Eigen-energies and eigen-functions obtained fromperturbation

3.1. The ground state
Nowwith the analytical formula give in equation (12),we explicitly give theperturbed eigen-energyE and eigen-
function ( )y xb

0 for the ground state inour generalizedquantumharmonic oscillatorwith a givenDDEMparameter
b. For the ground state,we canassume thatB0? B2n,n= 1, 2, 3,L . Then, fromequation (10), onehas
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for n� 1. Therefore, from equations (22) and (23), explicitly we have, noting that = = +E E n, n0
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With the coefficients above, the perturbed solution of ( )y xb
0 can be conducted immediately as
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It is noted that the identity ( )!! ( )!
!

- =n2 1 n

n

2

2n is applied. Therefore, we see thatQ(E)→ 0 as  =E E0
1

2
. As

one can see from equation (27), the probability factorQ(E) is linearly proportional, in the leading order, to the
eigen-energy E, but with the coefficient inversely proportional to theDDEMparameter b.

3.2. The second order excited state
In addition to the ground statewith n= 0, in general, all the perturbed eigen-energy E n

b
2 and eigen-function

( )y xn
b
2 can bewritten explicitly. Here, we illustrate the solutions for the second order excited state, E and ( )y xb

2 ,
by assumingB2? B2n, n= 0, 2, 3,L . Again, with equations (8) and (10), one can directly obtain:
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Then, the perturbation of ( )y xb
2 can be constructed by collecting the coefficients above, i.e.,

( ) ( ) ( ) ( ) y f f f» + + +x B x B x B xb
2 2 2 4 4 6 6 . It is noted that here, the expansion starts from n= 2 asB0= 0.

Again, we have ( ) ( )y fx xb
2 2 as  =E E2

5

2
.Moreover, thee resulting probability factorQ(E) in the

asymptotical limit, n→∞ has the form:
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Here, again, we see thatQ(E)→ 0 as  =E E2
5

2
.

In addition to the ground and second order excited states, for all the even number of n, the perturbed eigen-
energy E n

b
2 and eigen-function ( )y xn

b
2 , as well as the corresponding probability factor ( )Q E n

b
2 , can be derived

explicitly, with the help of equations (10), (12) and (20), respectively. As for the odd number of n, equations (10)
and (11) provide the required conditions to have the eigen-energy and eigen-functionwith the introduction of
theDDEMparameter b.

4.Numerical results by direct simulations

4.1. The ground state
In order to verify the validity of our analytical solutions obtained by the expansion, we also perform the
numerical calculations for equation (3) directly without applying any approximation. Here, the eigen-values/
eigen-functions are generated by substituting the eigen-function iteratively until a convergent eigen-value is
reached.Moreover, the linear stabilitymethod is applied for the found eigen-function. All the found eigen-
functions are stable due to the harmonic potential. Tomaintain some level of formal rigor andmathematical
correctness, we shall talk aboutfinding solutions of differential equations [32]. Tofind the solutions of the eigen-
value problemwith the nonlinear term, we connect with a quantumharmonic oscillator by solving equation (3)
with Fourier spectralmethod. Using thematrix elements, we diagonalize thematrix numerically and perform
the iteration to ensure that the truncated Fourier basismakes the eigen-value convergent. For low energy states,
already the smallest basis of 512 elements givesmore than sufficient accuracy.

Infigure 1, we show the corresponding lowest eigen-mode of the generalized quantumharmonic oscillator
described in equation (3), in the plot of probability factor versus eigen-energyQ-E. Starting from E0= 0.5, i.e.,
the eigen-energy of ground state in the standard quantumharmonic oscillator with b= 0; however, the eigen-
energy is not a discrete value, but a continuous function due to the introduction ofDDEM, i.e., b≠ 0.Here, the
initial guess solution has a single-humpprofile, i.e., a Gaussian function stemmed from the zero-th orderHn(x).
With a positive value of b, such as b= 1 and b= 2, shown in Blue- andRed-colored curves infigure 1, the
corresponding probability factorQ(E) presents an almost linear function of the eigen-energy E. Now, all the
eigen-energy E0

b are larger than that ofE0. Compared to the analytical formula of ( )Q E b
0 obtained in

Figure 1.The probability factorQ(E) defined in equation (20) for the ground state in quantumharmonic oscillator withDDEM, as a
function of eigen-energy E. Here, theDDEMparameter b is set as ±1 and ±2, depicted in Blue- andRed-colors, respectively. The
ground state energy in the linear limit, b = 0, ismarked asE0 = 0.5. Analytical solutions based on the perturbation theory given in
equation (27) are also depicted in the dashed-curves, which illustrate good agreement to the numerical solutions near E0.Moreover,
three different regions for the supported eigen-functions are identified for thosewith a smooth profile stemmed from the expansion of
Hermite-Gaussian wavefunctions (in Blue- andGreen-colored backgrounds for b > 0 and b < 0, respectively); andwith a peakon-
like profile having a singularity in itsfirst-order derivative (in Yellow-color background).
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equation (27), the dashed-curves give agreement to the numerical ones, not only on the slope ofQ-E curves but
also on the inversely proportional dependence on b.

Moreover, the correspondingwavefunction ( )y xb
0 is depicted infigure 2(a), which shares a similarGaussian

profile with that in the linear case b= 0. For example, at themarked eigen-energy EA= 0.75, the eigen-functions
( )y xb

0 have similarGaussian shapes both for b= 1 and b= 2. But the resulting amplitude, as well as thewidth, is
smaller with a larger value in theDDEMparameter, such as b= 2. The analytical solutions obtained by
perturbed theory, depicted in dashed-curves infigure 2(a), also reflect this similarity.

However, when b is negative, there are two distinct regions in thisQ-E curve, illustrated in theGreen- and
Yellow-colored backgrounds infigure 1. For theGreen-colored region, the corresponding eigen-energy is
smaller than E0= 0.5, but remains positive, i.e., < <E E0 b

0 0. The probability factor ( )Q E b
0 is also linearly

proportional to the eigen-energy E, as predicted by our analytical formula in equation (27). But, now the slope of
Q-E curve changes its sign, as the b< 0. The resultingwavefunction ( )y xb

0 , as shown infigure 2(b) for the
marked eigen-energy EB= 0.25, still has a smooth profile. However, the corresponding width of wavefunction
shrinkswhen E→ 0. As a result, a singularity emerges at =E 0s

0 for the ground state, inwhich nowell-defined
localizedwavefunction can be supported. The singularity comes from the divergence ofQ(E)near 1+ b|ψ|2= 0.
Moreover, as one can see, our theoretical formula also breaks downwhen E approaches this singularity.

Unexpectedly, single-hump solutions can be supported evenwhen < =E E 0s
0 , as shown in the Yellow-

colored region. As shown infigure 2(c) for themarked eigen-energy EC=− 0.25, instead of a smooth profile
stemmed from theGauss wavefunction, the resultingwavefunction of this family of peakon-like solutions has a
discontinuity in itsfirst-order derivative, similar to the peakon solution in the formof ( ∣ ∣)- xexp . Such peakon-
like solutions are also already found in the IDD setting for optical waves, evenwithout the introduction of
harmonic oscillators [11, 12]. As our perturbation theory starts from the eigen-basis ofHermite-Gaussian
functions, it is not applicable to this family of peak-like solutions.

Figure 2.Thewavefunction for (a)–(c) the ground state ( )y xb
0 and (d)–(f) the second order excited state ( )y xb

2 of the quantum
harmonic oscillator withDDEM b = ±1 and b = ±2, shown in Blue- andRed-colored curves, respectively, i.e., corresponding to the
markers (EA,EB,EC) and (ED,EE,EF andEG) labelled in figures 1 and 3, respectively. The analytical results based on the perturbation
theory are depicted in the dashed-curves, for ( )y xb

0 and ( )y xb
2 , accordingly.Here, the selected eigen-energiesE are chosen to represent

the typical profile of wavefunctions in three different regions: (a), (d) a smooth profile with b > 0; (b), (f) a smooth profile with b < 0,
and (c), (f) a peakon-like solutionwith b < 0.
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4.2. The excited states
In addition to the ground state, the founded second order excited states, both numerically and analytically, are
also depicted infigure 2(d)–(f). Again, we also have three different regions in charactering thewavefunction
profiles. Smooth profiles with theDDEM b> 0 and b< 0 are shown in (d) and (e) for themarked eigen-energies
ED= 2.75> E2= 2.5 andEE= 2.25< E2 infigure 3, respectively. As shown infigures 2(d) and (e), the two
solutions, ( )y xb

2 have three humps in their profiles and share the similar profile as the 2nd orderHermite-
Gaussian function. By comparing the solid- and dashed-curves, corresponding to our numerical results and
analytical solutions, respectively, one can see nearly perfect agreement for the solutions around the eigen-energy
E2.

Moreover, a discontinuous profile emerges when b< 0 and <E E s
2

,1, where the singularity happens. Unlike

theQ-E curves for the ground state, there exist two singularities, denoted as »E 0.8398s
2

,1 and =E 0s
2

,2 .When
the eigen-energy is smaller than the value at thefirst singularity E s

2
,1but larger than the value at the second

singularity E s
2

,2, for example EF= 0.75, the peakon-like solution illustrated in Blue-color infigure 2(f), has a
profile of ( ∣ ∣)- xexp in two of the humps in the sidebands. It is noted that the profile in the central hump remains

a smooth function.Nevertheless, when the eigen-energy is smaller than the value at the second singularity E s
2

,2 ,
for example EG=− 0.25, the corresponding eigen-function has discontinuities in all the three humps, as
depicted in Red-color infigure 3(f).

Infigure 3, we plot all the founded eigen-energies, up to n= 4, by depicting the solution familywith the same
number of humps in the eigen-functions ( )y xn

b in the same colors. One can see clearly that, all theQ-E curves

start from the eigen-energies = +E nn
1

2
of a standard quantumharmonic oscillator, i.e., b= 0. Around these

energy values, En, our perturbation theoryworks perfectly, giving the linear dependence ofQ(E) on the eigen-
energy, alongwith the inversely proportional relation to theDDEMparameter b. In particular, as depicted in the
dashed-curves, it can be seen clearly that our analytical solutions given in equation (33) illustrate good
agreement to the numerical solutions nearE2= 2.5.

However, when b turns negative and the supported eigen-energy En
b is away from the starting energy value En,

onemore singularities appear at certain value(s) ofEn
s . The number of singularity depends on the critical points

of theHermite polynomial due to the divergence ofQ(E)near 1+ b|ψ|2= 0. Considering the symmetry of
Hermite polynomial, i.e.,Hn(x)=±Hn(−x), as one can see fromfigure 3, the number of singularities for

( )Q E n
b
2 and ( )+Q E n

b
2 1 is the same, i.e., equal to n+ 1.

Before Conclusion, we remark the stability of the founded eigen-solutions of our generalized quantum
harmonic oscillator with a probability density-dependent effectivemass (DDEM). As confined by the external
harmonic oscillator, all the found eigen-solutions are stable numerically. The validity of our perturbation theory

is limited to the eigen-energy around the knownone = +E n2n2
1

2
. It is expected that our analytical formula

breaks downwhen En
b approaches En

s . As for the possible bifurcationmaps, how to develop an analyticalmethod
tofind the solutions for these peakon-like solutions, as well as around the singularities, is a challenge, which goes
beyond the scope of the current work but deserves further studies.

Figure 3.The probability factor versus eigen-energy curve,Q-E, for the excited states in a quantumharmonic oscillator withDDEM.
Here, theDDEMparameter b is set as ±1. The solution family with the samenumber of humps in the eigen-functions ( )y xn

b are
depicted in the same colors, with the labelled starting eigen-energies En, for n = 0, 1, 2, 3, 4. Analytical solutions based on the
perturbation theory given in equation (33) are also depicted in the Black dashed-curves, which illustrate good agreement to the
numerical solutions near E2 = 2.5.
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5. Conclusion

By introduction a probability density-dependent effectivemass (DDEM) for a quantumparticle in harmonic
oscillators, we propose a generalized Schrödinger equation to embrace the nonlinear effectivemass.With the
help of orthonormal property ofHermite-Gaussian functions, we reduce this partial differential equation into
an infinite discrete dynamical system and find the corresponding stationary solution by expanding b|Ψ|2. The
monotonicity of perturbed solutions is also approved rigorously. The resulting eigen-energy spectra is no longer
discretized, but continuous due to the introduction of a nonlinear effectivemass.With the comparison to
numerical results obtained by direct simulations, the validity of our analytical formula in the asymptotic limit, in
terms of the probability factor as a function of the eigen-energy,Q(E), can be easily verified, in particular for the
solutions stemmed from the expansion ofHermite-Gaussian functions. However, the nonlinear effectivemass
also introduces a new family of peakon-like solutions with a discontinuity in their first-order derivative, which
definitely deserves further studies.

It is noted that whatwe illustrated in this work is based on tackling equation (2), under theweak density
approximation. It is also possible to go beyond theweak density approximation by directly studying
equation (1). However, according to quantummechanics, the effectivemassm*(x) does not commutewith the
momentum− iÿ∂x. Instead of [ ( )]( )- ¶* m x i1 2 x

2, the product (− iÿ∂x)1/[2m*(x)](− iÿ∂x) should be taken
into account when the quantumparticle is considered. It has beenwell studiedwith the nonlinear Schrödinger
wave equation, or theGross–Pitaevskii equation in general, where the nonlinear terms come fromKerr-effect,
or themean-field interaction.With the eigen-energy and eigen-function illustrated in this work, our proposed
generalized quantumharmonic oscillator opens an unexplored area for quantumparticles with nonlinear
effectivemasses. A number of promising applications and directions for further explorationmay be identified
when particles accessing nonlinear correction to their effectivemass. Similarmodels related to our proposed
generalized quantumharmonic oscillators, but inmore complicated settings involve off-resonant self-induced
transparency (SIT) solitons [33, 34] spatially-periodic refractivity dopedwith two-level systems (TLS) [35, 36],
electromagnetically-induced transparency (EIT) via resonant dipole-dipole interactions [37, 38], and the
continuum limit of the Salernomodel [22–24].
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Appendix

Here, we give the details to prove the inequality shown in equations (16) and (17).
First of all, from equation (8), one can see that
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from equations (A6) and (A7), one can reach at the following inequality:
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With the results obtained in equations (A1), (A4) and (A9), the inequality shown in equation (17) can be
reached
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It is noted that the last two terms shown in equation (A10) is negative when n� 2.
This completes the proof.
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