Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw* (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 2	Quantum Mechanics	☐ Schrödinger picture	☐ Uncertainty Relation
$(3/12, 3/16, \frac{3/19}{})$		☐ Heisenberg picture	☐ Probability Interpretation
		☐ Interaction picture	☐ Measurement problem
		_	□ Non-locality
			☐ Macrorealism
week 3	Coherent states, $ \alpha\rangle$	☐ photon statistics	☐ Minimum Uncertainty States
(3/30, 4/2, 4/6)		□ bunching	☐ Classical-Quantum boundary
		□ Correlation function	
week 4	Quantum Phase Space	☐ Wigner function	☐ Quasi-probability
(4/9, 4/13)			☐ Quantum State Tomography
,			

• Assignment

Deadline: 3:30PM, Tuesday, March 30th

1.(a) Show that the mean and variance of photon number in the Poisson distribution are

$$\langle \hat{n} \rangle = \sum_{n} nP(n) = |\alpha|^2 \equiv \bar{n},$$
 (1)

$$\langle \Delta \hat{n}^2 \rangle = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2 = |\alpha|^2 = \langle \hat{n} \rangle.$$
 (2)

1.(b) Show that the mean and variance of photon number in the Bose-Einstein distribution are

$$\bar{n} = \sum_{n=0}^{\infty} n P(n) = \frac{1}{\exp[\hbar\omega/k_B T] - 1},$$
(3)

$$\Delta n^2 = \bar{n} + \bar{n}^2, \tag{4}$$

which is larger than that of a Poisson distribution.

2. Show that $\hat{D}(\alpha) \equiv e^{+\alpha \hat{a}^{\dagger} - \alpha^* \hat{a}}$ acts as a displacement operator upon the amplitudes \hat{a} and \hat{a}^{\dagger} , i.e.,

$$\hat{D}^{-1}(\alpha)\,\hat{a}\,\hat{D}(\alpha) = \hat{a} + \alpha,\tag{5}$$

$$\hat{D}^{-1}(\alpha)\,\hat{a}^{\dagger}\,\hat{D}(\alpha) = \hat{a}^{\dagger} + \alpha^*. \tag{6}$$

You may apply the formula

$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \cdots$$

3. Show that the set of all coherent states $|\alpha\rangle$ is a complete set,

$$\int |\alpha\rangle\langle\alpha|d^2\alpha = \pi \sum_n |n\rangle\langle n|, \quad \text{or} \quad \frac{1}{\pi} \int |\alpha\rangle\langle\alpha|d^2\alpha = 1.$$
 (7)

You may first consider the following integral identity, with $\alpha = |\alpha|e^{i\theta}$,

$$\int (\alpha^*)^n \alpha^m e^{-|\alpha|^2} d^2 \alpha = \int_0^\infty |\alpha|^{n+m+1} e^{-|\alpha|^2} d|\alpha| \int_0^{2\pi} e^{i(n-m)\theta} d\theta = \pi n! \, \delta_{mn}.$$

• Take-home Messages:

- 1. Poisson distribution
- 2. $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$
- 3. Displacement operator
- 4. Coherent states are Gaussian states

• From Scratch!!

• The coherent state $|\alpha\rangle$ has the Poisson distribution in the photon number,

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$
 (8)

• The coherent state is displaced from the ground state of a simple harmonic oscillator.

$$|\alpha\rangle = \hat{D}(\alpha)|0\rangle = e^{+\alpha\hat{a}^{\dagger} - \alpha^*\hat{a}}|0\rangle.$$
 (9)

• The set of all coherent states $|\alpha\rangle$ is a complete set,

$$\int |\alpha\rangle\langle\alpha|d^2\alpha = \pi \sum_n |n\rangle\langle n|, \quad \text{or} \quad \frac{1}{\pi} \int |\alpha\rangle\langle\alpha|d^2\alpha = 1.$$
 (10)

• Two coherent states corresponding to different eigenstates α and β are not orthogonal,

$$\langle \alpha | \beta \rangle = \exp(-\frac{1}{2}|\alpha|^2 + \alpha^*\beta - \frac{1}{2}|\beta|^2) = \exp(-\frac{1}{2}|\alpha - \beta|^2). \tag{11}$$

*Electronic address: rklee@ee.nthu.edu.tw