Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan.
Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw*

(Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 2	Quantum Mechanics	\square Schrödinger picture	\square Uncertainty Relation
$(3 / 12,3 / 16,3 / 19)$		\square Heisenberg picture	\square Probability Interpretation
		\square Interaction picture	\square Measurement problem
			\square Non-locality
			\square Macrorealism
week 3$(3 / 30,4 / 2,4 / 6)$	Coherent states, $\|\alpha\rangle$	\square photon statistics	\square Minimum Uncertainty States
		bunching	\square Classical-Quantum boundary
		\square Correlation function	
week 4$(4 / 9,4 / 13)$	Quantum Phase Space	\square Wigner function	\square Quasi-probability
			Quantum State Tomography

- Assignment

Deadline: 3:30PM, Tuesday, March 30th
1.(a) Show that the mean and variance of photon number in the Poisson distribution are

$$
\begin{align*}
\langle\hat{n}\rangle & =\sum_{n} n P(n)=|\alpha|^{2} \equiv \bar{n}, \tag{1}\\
\left\langle\Delta \hat{n}^{2}\right\rangle & =\left\langle\hat{n}^{2}\right\rangle-\langle\hat{n}\rangle^{2}=|\alpha|^{2}=\langle\hat{n}\rangle . \tag{2}
\end{align*}
$$

1.(b) Show that the mean and variance of photon number in the Bose-Einstein distribution are

$$
\begin{align*}
\bar{n} & =\sum_{n=0}^{\infty} n P(n)=\frac{1}{\exp \left[\hbar \omega / k_{B} T\right]-1}, \tag{3}\\
\Delta n^{2} & =\bar{n}+\bar{n}^{2}, \tag{4}
\end{align*}
$$

which is larger than that of a Poisson distribution.
2. Show that $\hat{D}(\alpha) \equiv e^{+\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}}$ acts as a displacement operator upon the amplitudes \hat{a} and \hat{a}^{\dagger}, i.e.,

$$
\begin{align*}
\hat{D}^{-1}(\alpha) \hat{a} \hat{D}(\alpha) & =\hat{a}+\alpha \tag{5}\\
\hat{D}^{-1}(\alpha) \hat{a}^{\dagger} \hat{D}(\alpha) & =\hat{a}^{\dagger}+\alpha^{*} \tag{6}
\end{align*}
$$

You may apply the formula

$$
e^{\hat{A}} \hat{B} e^{-\hat{A}}=\hat{B}+[\hat{A}, \hat{B}]+\frac{1}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\cdots
$$

3. Show that the set of all coherent states $|\alpha\rangle$ is a complete set,

$$
\begin{equation*}
\int|\alpha\rangle\langle\alpha| \mathrm{d}^{2} \alpha=\pi \sum_{n}|n\rangle\langle n|, \quad \text { or } \quad \frac{1}{\pi} \int|\alpha\rangle\langle\alpha| \mathrm{d}^{2} \alpha=1 . \tag{7}
\end{equation*}
$$

You may first consider the following integral identity, with $\alpha=|\alpha| e^{i \theta}$,

$$
\int\left(\alpha^{*}\right)^{n} \alpha^{m} e^{-|\alpha|^{2}} d^{2} \alpha=\int_{0}^{\infty}|\alpha|^{n+m+1} e^{-|\alpha|^{2}} d|\alpha| \int_{0}^{2 \pi} e^{i(n-m) \theta} d \theta=\pi n!\delta_{m n} .
$$

- Take-home Messages:

1. Poisson distribution
2. $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$
3. Displacement operator
4. Coherent states are Gaussian states

- From Scratch !!
- The coherent state $|\alpha\rangle$ has the Poisson distribution in the photon number,

$$
\begin{equation*}
|\alpha\rangle=e^{-\frac{1}{2}|\alpha|^{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle . \tag{8}
\end{equation*}
$$

- The coherent state is displaced from the ground state of a simple harmonic oscillator.

$$
\begin{equation*}
|\alpha\rangle=\hat{D}(\alpha)|0\rangle=e^{+\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}}|0\rangle \tag{9}
\end{equation*}
$$

- The set of all coherent states $|\alpha\rangle$ is a complete set,

$$
\begin{equation*}
\int|\alpha\rangle\langle\alpha| \mathrm{d}^{2} \alpha=\pi \sum_{n}|n\rangle\langle n|, \quad \text { or } \quad \frac{1}{\pi} \int|\alpha\rangle\langle\alpha| \mathrm{d}^{2} \alpha=1 . \tag{10}
\end{equation*}
$$

- Two coherent states corresponding to different eigenstates α and β are not orthogonal,

$$
\begin{equation*}
\langle\alpha \mid \beta\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}+\alpha^{*} \beta-\frac{1}{2}|\beta|^{2}\right)=\exp \left(-\frac{1}{2}|\alpha-\beta|^{2}\right) \tag{11}
\end{equation*}
$$

[^0]
[^0]: *Electronic address: rklee@ee.nthu.edu.tw

