Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw^{*} (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 8	Photon-Atom Interactions	\Box Einstein's AB coefficients	□ Rabi-frequency
(5/11, 5/14)		\Box Classical model	\Box Wavefunction Revival
		\Box Semi-Classical	
weeks 9-10	Full Quantum model	□ Jaynes-Cummings	\Box Vacuum Rabi oscillation
(5/18, 5/21, 5/25)		\Box Dicke model	\Box Collective interaction
		\Box Cavity-QED	\Box Circuit-QED
week 11-12	Open systems	\Box Weisskopf-Wigner approximation	\Box dissipation-fluctuation theorem
(5, /28, 6/1, 6/4)		\Box Born-Markovian approximation	\Box non-Markovian
		\square Master equation	
		\Box Lindblad equation	

• Assignment

Deadline: 4:00PM, Friday, June 4th

- (1) [Quantum Langevin noises] :

Show that the Langevin noise operators have zero means, $\langle \hat{F}_a(t) \rangle_R = \langle \hat{F}_a^{\dagger}(t) \rangle_R = 0$, but non-zero variances,

$$\langle \hat{F}_a^{\dagger}(t)\hat{F}_a(t')\rangle_R = \sum_k |g_k|^2 \bar{n}_k \exp[i(\nu_k - \omega)(t - t')] = \Gamma \bar{n}_{th} \delta(t - t'), \qquad (1)$$

which is called the *dissipation-fluctuation theorem*.

• Take-home Messages:

- 1. Damping via Oscillator Reservoir
- 2. Weisskopf-Wigner theory
- 3. Markovian White Noise
- 4. Dissipation-Fluctuation theorem
- 5. Quantum Noises
- 6. Thermo Noises

^{*}Electronic address: rklee@ee.nthu.edu.tw