Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw^{*} (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 2	Quantum Mechanics	□ Schrödinger picture	□ Uncertainty Relation
$(3/12, 3/16, \frac{3}{19})$		□ Heisenberg picture	\Box Probability Interpretation
		\Box Interaction picture	\Box Measurement problem
			\Box Non-locality
			□ Macrorealism

• Take-home Messages:

- 1. "Nothing that is done in one system can instantaneously affect the density matrix of another isolated system, although it can affect the state vector." from "Quantum mechanics without state vectors", Steven Weinberg, Phys. Rev. A 90, 042102 (2014).
- 2. Pure and Mixed states
- 3. Density Operator
- 4. Poisson distribution
- 5. Bose-Einstein distribution

• From Scratch !!

- \bullet Examples:
 - 1. $|\Psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle$, where $\langle \phi_i |\phi_j \rangle = \delta_{ij}$, orthonormal.
 - 2. $\langle \Psi | \Psi \rangle = 1$, normalization condition: $|c_1|^2 + |c_2|^2 = 1$.
 - 3. Pure states: let $|\Psi\rangle = \frac{1}{\sqrt{2}} |\phi_1\rangle + \frac{1}{\sqrt{2}} |\phi_2\rangle$, then we have

$$\hat{\rho}_1 = |\phi_1\rangle\langle\phi_1| = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^{-1};$$
(1)

$$\hat{\rho}_2 = |\phi_2\rangle\langle\phi_2| = \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}^{-1};$$
(2)

$$\hat{\rho}_{\Psi} = |\phi_1\rangle\langle\phi_1| = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^{-1};$$
(3)

4. Mixed states: let $\hat{\rho}_{mix} = \frac{1}{2}\hat{\rho}_1 + \frac{1}{2}\hat{\rho}_2$, then we have

$$\hat{\rho}_{mix} = \frac{1}{2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = \frac{1}{d} \overline{\overline{I}}_d; \quad (d=2)$$

$$\tag{4}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1};$$
(5)

5. Purity:

$$\operatorname{tr}(\hat{\rho}_1^2) = 1;$$
 (6)

$$\operatorname{tr}(\hat{\rho}_{2}^{2}) = 1;$$
 (7)
 $\operatorname{tr}(\hat{z}^{2}) = 1.$ (9)

$$\operatorname{tr}(\hat{\rho}_{\Psi}^2) = 1;$$
 (8)
 $\operatorname{tr}(\hat{c}_{\Psi}^2) = -1/2;$ (0)

$$\operatorname{tr}(\hat{\rho}_{mix}^2) = 1/2; \tag{9}$$

• Poisson distribution Coherent state $|\alpha\rangle$ has the Poisson distribution in the photon number,

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$
(11)

• i.i.d. limit:

$$P(n) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n},$$
(12)

which is a *binomial distribution*.

• Boltzmann's law:

 $P(n) \propto \exp[-E_n/k_B T],$

where T denotes the temperature, and k_B is the Boltzmann's constant.

 $\bullet\,$ Thermal states:

$$\rho_{th} = \sum_{n} = \frac{1}{\bar{n}+1} (\frac{\bar{n}}{\bar{n}+1})^n |n\rangle \langle n|.$$
(13)

 $\mathbf{2}$

^{*}Electronic address: rklee@ee.nthu.edu.tw