Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee ${ }^{1}$
${ }^{1}$ Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw* (Dated: Spring, 2021)
\section*{Syllabus:}

Date	Topic	To Know	To Think
$\begin{aligned} & \text { weeks } 9-10 \\ & (5 / 18,5 / 21,5 / 25, \\ & 5 / 28) \end{aligned}$	Full Quantum model	\square Jaynes-Cummings \square Dicke model \square Cavity-QED	Vacuum Rabi oscillation Collective interaction Circuit-QED
week 11-12$(6 / 1$, $6 / 11)$$\quad 6 / 4, \quad 6 / 8$,	Open systems	\square Weisskopf-Wigner approximation \square Born-Markovian approximation \square Master equation \square Lindblad equation	dissipation-fluctuation theorem non-Markovian
$\begin{aligned} & \hline \text { week } 13-14 \\ & (6 / 15,6 / 18) \end{aligned}$	Selected Applications of QO	Quantum Sensor Test of Quantum Mechanics Quantum Communication Quantum Computing	Gravitational Wave Detectors Quantum Zeno effect Quantum Key Distribution Quantum Photonic Circuit

- Take-home Messages:

1. Master equation
2. Born-Markovian approximation
3. Lindblad form:

- (a): For any effective Hamiltonian, which may not be Hermitian, one can write down it as

$$
\begin{equation*}
\hat{H}_{e f f}=\hat{H}-i \hat{V}, \tag{1}
\end{equation*}
$$

where \hat{H} and \hat{V} are Hermitian.

- (b) However the normalization of $|\psi\rangle$ becomes

$$
\begin{equation*}
\frac{d}{d t}\langle\psi \mid \psi\rangle=-2\langle\psi| \hat{V}|\psi\rangle . \tag{2}
\end{equation*}
$$

- (c) To keep the normalization of states, we can introduce

$$
\begin{equation*}
\hat{V}=\sum_{a} \gamma_{a} \hat{T}_{a}^{\dagger} \hat{T}_{a} . \tag{3}
\end{equation*}
$$

- (d) The resulting von Neumann equation for the density matrix has the form,

$$
\begin{equation*}
\frac{d}{d t} \hat{\rho}=\frac{1}{i \hbar}[\hat{H}, \hat{\rho}]-\sum_{a} \gamma_{a}\left(\hat{T}_{a}^{\dagger} \hat{T}_{a} \hat{\rho}-2 \hat{T}_{a} \hat{\rho} \hat{T}_{a}^{\dagger}+\hat{\rho} \hat{T}_{a}^{\dagger} \hat{T}_{a}\right), \tag{4}
\end{equation*}
$$

which is called the quantum master equation.

- Assignment

Deadline: 4:00PM, Tuesday, June 22nd

- (1) Consider the damping of an optical cavity mode by a two-level atomic beam reservoir.
- (a)Derive the equation of motion for the reduced density operator $\operatorname{Tr}_{R}[\hat{\rho}(t)] \equiv \hat{\rho}_{f}(t)$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\rho}_{f}(t)=\left(\frac{1}{i \hbar}\right)^{2} \int_{0}^{t} \mathrm{~d} t^{\prime} \operatorname{Tr}_{R}\left(\left[\hat{H}_{I}(t),\left[\hat{H}_{I}\left(t^{\prime}\right), \hat{\rho}_{f}(t) \otimes \hat{\rho}_{R}(0)\right]\right]\right) . \tag{5}
\end{equation*}
$$

- (b) Then, assume that r atoms are injected into the cavity per second, and they spend an average time of τ seconds inside the cavity, i.e.

$$
\begin{equation*}
\int_{0}^{\tau} \mathrm{d} t^{\prime} r t^{\prime}=\frac{1}{2} r \tau^{2}, \tag{6}
\end{equation*}
$$

Find the diagonal elements of the reduced density matrix $\operatorname{Tr}_{R}[\hat{\rho}(t)]$

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{n, n}(t) & =-\frac{\nu}{Q_{0}}\left\{\left[n_{t h}(n+1)-\left(n_{t h}+1\right) n\right] \rho_{n, n}-n_{t h} \rho_{n-1, n-1}-\left(n_{t h}+1\right)(n+1) \rho_{n+1, n+1}\right\}, \tag{7}\\
& =\left[-R_{e}(n+1)-R_{g} n\right] \rho_{n n}+R_{e} n \rho_{n-1, n-1}+R_{g}(n+1) \rho_{n+1, n+1}, \tag{8}
\end{align*}
$$

where then,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\rho}_{f}(t)=-\frac{1}{2} R_{e}\left[\hat{a} \hat{a}^{\dagger} \hat{\rho}_{f}-\hat{a}^{\dagger} \hat{\rho}_{f} \hat{a}\right]-\frac{1}{2} R_{g}\left[\hat{a}^{\dagger} \hat{a} \hat{\rho}_{f}-\hat{a} \hat{\rho}_{f}(t) \hat{a}^{\dagger}\right]+\text { H.C } \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{e}=r \rho_{a a} g^{2} \tau^{2}, \quad \text { and } \quad R_{g}=r \rho_{b b} g^{2} \tau^{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\nu}{Q_{0}} \equiv R_{g}-R_{e}, \quad \text { and } \quad R_{e}\left(1+n_{t h}\right)=R_{g} n_{t h} \rightarrow n_{t h}=\frac{R_{e}}{R_{g}-R_{e}}=\frac{1}{\exp \left(\hbar \omega / k_{b} T\right)-1} . \tag{11}
\end{equation*}
$$

- (c) Show the detailed balance condition, with the solution

$$
\begin{equation*}
\rho_{n, n}=\left[1-\exp \left(-\hbar \omega / k_{B} T\right)\right] \exp \left(-n \hbar \omega / k_{B} T\right), \tag{12}
\end{equation*}
$$

with $n_{t h}=\frac{1}{\exp \left(\hbar \omega / k_{b} T\right)-1}$.

[^0]
[^0]: *Electronic address: rklee@ee.nthu.edu.tw

