Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-57<u>42439</u>; E-mail: rklee@ee.nthu.edu.tw^{*} (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 3 $(3/30, \frac{4}{2}, \frac{4}{6})$	Coherent states, $ \alpha\rangle$	□ photon statistics □ bunching □ Correlation function	☐ Minimum Uncertainty States ☐ Classical-Quantum boundary □
week 4 (4/9, 4/13)	Quantum Phase Space	□ Wigner function	□ Quasi-probability □ Quantum State Tomography □
week 5 (4/16, 4/20, 4/23)	Squeezed states	$\Box \xi\rangle$ $\Box OPO$	□ Continuous Variables
week 6 (4/27, 4/29)	Two-mode Squeezed states	□ EPR pair □ Cat states □ non-Gaussian states	□ Quantum Discord □ Entanglement □ Steering □ Bell's inequality

• Assignment

Deadline: 4:00PM, Friday, April 20th

1. Show that the unitary transformation of the squeeze operator,

$$\hat{S}^{\dagger}(\xi)\hat{a}\hat{S}(\xi) = \hat{a}\cosh r - \hat{a}^{\dagger}e^{i\theta}\sinh r, \qquad (1)$$

 $\hat{S}^{\dagger}(\xi)\hat{a}^{\dagger}\hat{S}(\xi) = \hat{a}^{\dagger}\cosh r - \hat{a}e^{-i\theta}\sinh r, \qquad (2)$

with the formula $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]], \dots$ 2. Show that the variances for squeezed vacuum are

$$\Delta \hat{a}_1^2 = \frac{1}{4} [\cosh^2 r + \sinh^2 r - 2\sinh r \cosh r \cos \theta], \qquad (3)$$

$$\Delta \hat{a}_2^2 = \frac{1}{4} [\cosh^2 r + \sinh^2 r + 2\sinh r \cosh r \cos \theta], \qquad (4)$$

3. Show that the expectation values for squeezed coherent states are,

$$\alpha, \xi |\hat{a}|\alpha, \xi\rangle = \alpha, \tag{5}$$

$$\langle \hat{a}^2 \rangle = \alpha^2 - e^{i\theta} \sinh r \cosh r, \tag{6}$$

$$\langle \hat{a}^{\dagger} \hat{a} \rangle = |\alpha|^2 + \sinh^2 r, \tag{7}$$

with helps of

$$\hat{D}^{\dagger}(\alpha)\hat{a}\hat{D}(\alpha) = \hat{a} + \alpha,$$
$$\hat{D}^{\dagger}(\alpha)\hat{a}^{\dagger}\hat{D}(\alpha) = \hat{a}^{\dagger} + \alpha^{*}.$$

4. Consider squeezed vacuum state in the basis of number states,

$$|\xi\rangle = \sum_{n=0}^{\infty} C_n |n\rangle,$$

Shown that

$$|\xi\rangle = \frac{1}{\sqrt{\cosh r}} \sum_{m=0}^{\infty} (-1)^m \frac{\sqrt{(2m)!}}{2^m m!} e^{im\theta} \tanh^m r |2m\rangle,\tag{8}$$

where the coefficient C_0 can be determined from the normalization, *i.e.*, $C_0 = \sqrt{\cosh r}$.

<

• Take-home Messages:

- 1. Squeezed Operator
- 2. Squeezed Vacuum
- 3. Squeezed Coherent states v.s. Coherent Squeezed states
- 4. Squeezed states as the Minimum Uncertainty states
- 5. Generation of Squeezed states by Optical Parametric Oscillators (OPO)
- 6. Homodyne detections

• From Scratch !!

• One of the squeezed states can be defined as,

$$|\Psi_s\rangle = \hat{S}(\xi)|\Psi\rangle,\tag{9}$$

with the unitary Squeeze operator $\hat{S}(\xi) = \exp[\frac{1}{2}\xi^*\hat{a}^2 - \frac{1}{2}\xi\hat{a}^{\dagger 2}].$

• If $|\Psi\rangle$ is the vacuum state $|0\rangle$, then $|\Psi_s\rangle$ state is the squeezed vacuum,

$$|\xi\rangle = \hat{S}(\xi)|0\rangle. \tag{10}$$

• The variances for squeezed vacuum are

$$\Delta \hat{a}_1^2 = \frac{1}{4} [\cosh^2 r + \sinh^2 r - 2\sinh r \cosh r \cos \theta], \qquad (11)$$

$$\Delta \hat{a}_2^2 = \frac{1}{4} [\cosh^2 r + \sinh^2 r + 2\sinh r \cosh r \cos \theta], \qquad (12)$$

• For $\theta = 0$, we have

$$\Delta \hat{a}_1^2 = \frac{1}{4}e^{-2r}, \quad \text{and} \quad \Delta \hat{a}_2^2 = \frac{1}{4}e^{+2r}, \tag{13}$$

and squeezing exists in the \hat{a}_1 quadrature.

• Squeezed states as the Minimum Uncertainty states:

$$(\mu \hat{a} + \nu \hat{a}^{\dagger})|\xi\rangle = 0, \tag{14}$$

the squeezed vacuum state is an eigenstate of the operator $\mu \hat{a} + \nu \hat{a}^{\dagger}$ with eigenvalue zero. Similarly,

$$\hat{D}(\alpha)\hat{S}(\xi)\hat{a}\hat{S}^{\dagger}(\xi)\hat{D}^{\dagger}(\alpha)\hat{D}(\alpha)|\xi\rangle = 0,$$
(15)

with the relation $\hat{D}(\alpha)\hat{a}\hat{D}^{\dagger}(\alpha) = \hat{a} - \alpha$, we have

$$(\mu \hat{a} + \nu \hat{a}^{\dagger})|\alpha,\xi\rangle = (\alpha \cosh r + \alpha^* \sinh r)|\alpha,\xi\rangle \equiv \gamma|\alpha,\xi\rangle.$$
⁽¹⁶⁾

^{*}Electronic address: rklee@ee.nthu.edu.tw