Quantum Optics, IPT5340

Time: RnF8F9 (12:10-13:00, Thursday and 16:30-18:00, Friday), at Room 201, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw* (Dated: Spring, 2023)

(Dated

- \bullet References:
 - 1. Text Book: Pierre Meystre, "Quantum Optics," Springer (2021).
 - 2. P. W. Milonni, "An Introduction to Quantum Optics and Quantum Fluctuations," Oxford (2019).
 - 3. G. S. Agarwal, "Quantum Optics," Cambridge University (2013).
 - 4. U. Leonhardt, "Essential Quantum Optics," Cambridge (2010).
 - 5. G. Grynberg, A. Aspect, and C. Fabre, "Introduction to Quantum Optics," Cambridge (2010).
 - 6. D. F. Walls and G. J. Milburn, "Quantum Optics," 2nd Ed. Springer (2008).
 - 7. M. Fox, "Quantum Optics, an introduction," Oxford (2006).
 - 8. C. C. Gerry and P. L. Knight, "Introductory Quantum Optics," Cambridge (2005).
 - 9. Y. Yamamoto and A. Imamoglu, "Mesoscopic Quantum Optics," Wiley (1999).
 - 10. M. O. Scully, and M. S Zubairy, "Quantum Optics," Cambridge (1997).
- Teaching Method:

in-class lectures with discussions and assignments.

• Expected Outputs:

- Quantum properties of Electromagnetic Fields;
- Non-classical light and its generation, measurement, and applications;
- Interaction between photon-atoms;
- Test of Quantum Mechanics by Optics;
- Applications in Quantum Metrology, Quantum Communication, and Quantum Computing.
- Syllabus:

- Introduction to Quantum Optics

- Quantum Theory
- Quantum Field theory of Light:
 - 1. Number states and Coherent States,
 - 2. Squeezed States and Phase Space,

- Simple Optical Instruments:

- 1. Beam Splitter,
- 2. Detection.

- Photon-atom interaction:

- 1. Rabi oscillation,
- 2. Jaynes-Cummings Hamiltonian,
- 3. Dicke model,
- 4. Cavity-Quantum Electro-Dynamics (Cavity-QED),
- 5. Electromagnetically Induced Transparency (EIT),
- 6. Optical Parametric Oscillator (OPO),
- 7. Dissipative Systems.

- Applications of Quantum Optics:

- 1. Entanglement,
- 2. Horizons,
- 3. Gravitational Wave Detectors,
- 4. Test of Quantum Mechanics,
- 5. Quantum Information Processing.

• Evaluation:

- Homework, 40%;
- Midterm, 30%;
- Final Exam, 30%;
- Class suspended (to be confirmed): 2/21, 2/24: RK to NAOJ
- Online Materials:
 - https://eeclass.nthu.edu.tw
 - Slack Channel: https://quantumoptics-zgq1695.slack.com/archives/C032Y1UABEW
 - RKLee's web site: http://mx.nthu.edu.tw/ rklee/index.html
- Office hours:
 - 1:00-3:30 PM, Wednesday and Friday, at R911, Delta Hall
 - Or by appointment.
- TA:

Mr. Hauser (Zi-Hau Shi), PhD Student, IPT/NTHU e-mail: shizhihao1209@gmail.com

• Questions:

- 1. What is the nature of light?
 - As a wave, do you known how to measure/estimate phase, interference?
 - As a particle, do you know how to characterize the pureness of a single photon?
 - As a quantum state, how to distinguish the quantum and classical nature of light?
 - For bipartite, how to know the identity, correlation, entanglement between them?
- 2. Test of Quantum Mechanics by Optics.
 - Are we satisfied with the axioms of quantum mechanics (QM)?
 - Why QM can not be seen in daily life?
 - Do we need to extend and/or modify QM?
 - What is the link between QM and Gravity?
- 3. Applications of Quantum Optics.
 - Quantum Information Processing.
 - Interferometry: Gravitational Wave Detectors.

2

^{*}Electronic address: rklee@ee.nthu.edu.tw

Syllabus:

Date	Topic	To Know	To Think
Feb. 16th	Introduction	Scope	 □ Your and My Expectations. □ What is the nature of light? □ Anything else ?
Feb. 17th (Fridayt)	Simple Harmonic Oscillator (SHO)	□ classical trajectory □ analogue to EM waves	□ Bohmian mechanics □ Inverted SHO □
$\frac{2}{22-2},$			
preview	Quantum Mechanics	□ Schrödinger picture □ Heisenberg picture □ Interaction picture	 Uncertainty Relation Probability Interpretation Measurement problem Non-locality Macrorealism
week 2	Quantum SHO	$\Box \text{ Fock states, } n\rangle$ $\Box \text{ creation operator, } \hat{a}^{\dagger}$	□ single-photon detection □ Wave-Particle Duality □ photon-number resolving □
		□ Vacuum state □ Quantum Fluctuations	□ Shot Noise Limit □ Casimir Force □
week 3	Coherent states, $ \alpha\rangle$	 photon statistics bunching Correlation function 	□ Minimum Uncertainty States □ Classical-Quantum boundary □
3/15-3/17,			
week 4	Squeezed states	$\Box \xi\rangle$ $\Box OPO$	□ Continuous Variables
week 5	Two-mode Squeezed states	□ EPR pair □ Cat states □ non-Gaussian states	 Quantum Discord Entanglement Steering Bell's inequality
week 6	Optical devices	□ Beam splitter □ Mach-Zehnder interferometer	$\Box \text{ linear optics}$
week 6	Interferometry	\Box Young's Interferometry, $g^{(1)}$ \Box HBT-Interferometry, $g^{(2)}$	□ Quantum Phase Estimation □ Quantum Fisher Information □
April 14th	Midterm		
week 8	Quantum Phase Space	□ Wigner function	□ Quasi-probability □ Quantum State Tomography □

Syllabus:

Date	Topic	To Know	To Think
week 9-10	Photon-Atom Interactions	□ Einstein's AB coefficients □ Classical model □ Semi-Classical	□ Rabi-frequency □ Wavefunction Revival
weeks 10-11	Full Quantum model	□ Jaynes-Cummings □ Dicke model □ Cavity-QED	□ Vacuum Rabi oscillation □ Collective interaction □ Circuit-QED □
week 11-12	Open systems	 Weisskopf-Wigner approximation Born-Markovian approximation Master equation Lindblad equation 	□ dissipation-fluctuation theo- rem □ non-Markovian □
week 13-14	Selected Applications of QO	□ Quantum Sensor □ Test of Quantum Mechanics □ Quantum Communication □ Quantum Computing □	□ Gravitational Wave Detectors □ Quantum Zeno effect □ Quantum Key Distribution □ Quantum Photonic Circuit □
June 14th	Fina Examl		
Related Courses	Quantum Mechanics Atomic Physics Nonlinear Optics Quantum Information Quantum Computing Quantum Communication Quantum Simulation	□ AMO-Physics □ QIS □ IBM Qiskit □ Quantum Machine Learning □	
Open Questions	□ Quantum in Macroscopic □ Extended QM □ Quantum Gravity □		
May 29-30	KIW	KAGRA International Workshop	NTHU
June 19-22	EACN	Entanglement-Assisted Communi- cation Network	
June 26-30	ICSSUR	International Conference on Squeezed States and Uncertainty Relations	IAMS/AS
Late August	AMO Summer School		