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I. CLASSICAL SPRING-MASS SYSTEM

The motion of a spring, with the mass m and the Hooke’s constant k, can be described by the Newton’s second
law,
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The corresponding solution is
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Z(t) = A cos(wot + ¢o), W = (2)
with the kinetic energy (K.E.) and potential energy (P.E.):
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The total energy, E = K.E. + P.E., of a simple harmonic oscillator (SHO) is a constant, that is
Lo
E= ikA = constant. (5)

The Hamiltonian of a SHO is
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II. QUANTUM SHO

By introducing the position and momentum operators, & and p, respectively, we have the Hamiltonian for a quantum
SHO,
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where the  and p are non-commute operators, i.e.,
[Z,p] = ih. (8)

A. Momentum operator

If one take the momentum as a generator of translation, i.e.,

dz
dt’

P=mv=m

and for an infinitesimal translation, we have
T(dx)|z) = |z + da),
where 7' denotes the operator, and |z) is the eigen-state vector in the x-representation, with the eigen-value z, i.e.,
For a generator of translation, we have
T(dz)|z) = |z + dz). (9)
Following 4 properties are required to be satisfied for the generator of translation as a linear operator:
1. Unitary:
(2'|2y = (x| T (dz)T (dz)|z) = (x + da|x + da), (10)

where (z| and |z) correspond to the bra and ket states in Dirac’s notation, respectively. 71 denotes the adjoint
of the operator 7. An operator is hermitian if it is self-adjoint, i.e.,

O=0".
2. Addition: The operations are additive, i.e.,
T(day)T (dao)|z) = T (day + dao)|a). (11)
3. Inverse: There should be an inverse operator, denoted as 71 to satisfy
T~ Ydz) = T(—dzx). (12)
4. Identity: As dz — 0, we should have
Jim T(dx) = 1. (13)

To satisfy these four properties, we assume the generator of translation has the form:

f(dx):i—i/%-dx:i—z'%d% (14)



where de Broglie’s relation is used hk = p and k = 2w /\. Note that

T (da")|a') = (¢’ + da') |z’ + da'),
T(da')z|2') = |2’ + da'),

hence, we have the commutator [/1, é] = AB — BA as
(@, T(da")] = da,
or

&, 5] = ih.

By extending to a general form, we have the commutation relation for the position and momentum operators,

[fi,ﬁj} =1ih (2]

B. 2- and p-representations

We use |z) and |p) for the states representations in the position and momentum spaces, respectively,

=

lz) = =l|z),
plp) = plp)-

The transformation between these two spaces is
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ple) = —ihz),

vie) = o) = —— [ dpesp(ED)(p)
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C. Schrédinger’s picture

The equation of motion of a quantum state is described by the Schrédinger’s equation:

0 A
ih|6) = Hl6).

For the eigen-state of SHO Hamiltonian,

we have
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where ®(z,t) = (x|d)exp(—iEt/h) = (x)exp(—iEt/h) denotes the state in the z-representation. By defining the
new variable £ = (/"= xz, we have the Hermite equation,

- WO =0, =2, (30)
which gives the Hermite-Gaussian solutions associated with Hermite polynomials H,,
(&) = Hy(€)exp[—£2/2], e=2n+1, n=0,1,23... (31)
For the corresponding eigen-energy:
E:%e:hw(n—&-%), n=0,1,2,3,.... (32)
The ground state of a SHO is denoted as |0), which in the z-representation is
U(x) = (2]0) = coexp[—£2/2], where ¢ is a normalization constant, (33)

and the eigen-energy of the ground state is Fy = hw/2.

D. Heisenburg’s picture

In terms of the operators, [2,p] = ih, we can introduce the creation (a')and annihilation (@) operators, respectively,

i = \/ﬁ[mwi—kiﬁ], (34)
al = \/ﬁ[mwif@ﬁ]. (35)
Or
) R
z = \/W(CH_Q ), (36)
b= V), (37)

The commutation relation for the creation and annihilation operators becomes

and the associate SHO Hamiltonian is

E. Properties of the creation and annihilation operators

1. @ and a' are NOT Hermitian operators. That is

Q>
T

Q>
L

for which no real eigenvalue are generated.

2. Number operator: An Hermitian operator can be defined as

N

ata. (40)



3. The commutation relations with the SHO Hamiltonian are:

[H,a) = —hwa, (41)
[H,a") = hwa, (42)
(43)

4. Raising (step-up) and Lowering (step-down) operators: Consider the eigen-state of SHO Hamiltonian, H|¢) =
E|¢), then

Halg) = (E - hw)il¢), (44)
Hallg) = (E+hw)al|g), (45)

where a|¢) and af|@) are also eigen-states of SHO, but with the eigen-values E — hw and E + hw, respectively.
|¢) is a discrete states, denoted as |n) in the following.

5. Ground state:

Gl1I0) = holglaa + 5],

= holaglag) + o0 > 1 (46)

| &

Based on above, we denote the ground state as [n = 0) = |0), with the energy Ey = 7w, which is the eigen-state
of

al0) =0, the lowest energy state. (47)
6. Exited state:
n) = (a*)"|0), (48)
with the energy
1

7. Normalization constants:

Nln) = nln), (49)
aln) = Culn—1) = vnjn —1), (50)
a'ln) = Chpaln+1) =vVn+1n+1), (51)

where the normalization constant C,, (Cy,+1) can be derived by
(nlataln) = (n|Nn) = n =|Cp|?(n — 1|n — 1). (52)

8. Heisenberg’s equation: The dynamics of the operator is governed by the Heisenberg’s equation:

d - 1 ~ =~
—0 = —[0, H].
For the annihilation operator of SHO, a, we have
d 1
@ A I — i 4
i m[a,fm(a a+ =) iwa, (54)

with the solution



One can define two hermitian operators

which have the commutator relation,

e Abelian and non-Abelian Operators
e Interaction Picture

e Uncertainty Relation

F. Quadrature Operators
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Xy = ?i(a_aT)a
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G. Related Topics:

(56)

(57)

(58)



