# Note for Quantum Optics: <br> Quantum SHO 

Ray-Kuang Lee ${ }^{1}$
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300, Taiwan
(Dated: Spring, 2020)
[Reference:]

- Chapter I, in C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, "Photons \& Atoms", John Wiley \& Sons (1989).
- Chapter 2, in J. J. Sakurai, "Modern Quantum Mechanics, " Addison Wesley (1994).
- Chapter 7, in A. Goswami, "Quantum Mechanics, " WCB Publishers (1992).


## I. CLASSICAL SPRING-MASS SYSTEM

The motion of a spring, with the mass $m$ and the Hooke's constant $k$, can be described by the Newton's second law,

$$
\begin{equation*}
\vec{F}=m \vec{a}=m \frac{d^{2} \vec{x}}{d t^{2}}=-k \vec{x} \tag{1}
\end{equation*}
$$

The corresponding solution is

$$
\begin{equation*}
\vec{x}(t)=A \cos \left(\omega_{0} t+\phi_{0}\right), \quad \omega_{0}^{2}=\frac{k}{m} \tag{2}
\end{equation*}
$$

with the kinetic energy (K.E.) and potential energy (P.E.):

$$
\begin{align*}
& \text { K.E. }: T=\frac{1}{2} m v^{2}=\frac{1}{2} k A^{2} \sin ^{2}\left(\omega_{0} t+\phi_{0}\right)  \tag{3}\\
& \text { P.E. }: U=-\int \vec{F} \cdot d \vec{x}=\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2} \cos ^{2}\left(\omega_{0} t+\phi_{0}\right) \tag{4}
\end{align*}
$$

The total energy, $E=$ K.E. + P.E., of a simple harmonic oscillator (SHO) is a constant, that is

$$
\begin{equation*}
E=\frac{1}{2} k A^{2}=\text { constant } \tag{5}
\end{equation*}
$$

The Hamiltonian of a SHO is

$$
\begin{equation*}
H=\text { K.E. }+ \text { P.E. }=\frac{1}{2} \frac{p^{2}}{m}+\frac{1}{2} k x^{2} . \tag{6}
\end{equation*}
$$

## II. QUANTUM SHO

By introducing the position and momentum operators, $\hat{x}$ and $\hat{p}$, respectively, we have the Hamiltonian for a quantum SHO,

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \frac{\hat{p}^{2}}{m}+\frac{1}{2} k \hat{x}^{2} \tag{7}
\end{equation*}
$$

where the $\hat{x}$ and $\hat{p}$ are non-commute operators, i.e.,

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i \hbar \tag{8}
\end{equation*}
$$

## A. Momentum operator

If one take the momentum as a generator of translation, i.e.,

$$
p \equiv m v=m \frac{d x}{d t}
$$

and for an infinitesimal translation, we have

$$
\hat{\mathcal{T}}(d x)|x\rangle=|x+d x\rangle,
$$

where $\hat{T}$ denotes the operator, and $|x\rangle$ is the eigen-state vector in the $x$-representation, with the eigen-value $x$, i.e.,

$$
\hat{x}|x\rangle=x|x\rangle
$$

For a generator of translation, we have

$$
\begin{equation*}
\hat{\mathcal{T}}(d x)|x\rangle=|x+d x\rangle \tag{9}
\end{equation*}
$$

Following 4 properties are required to be satisfied for the generator of translation as a linear operator:

1. Unitary:

$$
\begin{equation*}
\left\langle x^{\prime} \mid x^{\prime}\right\rangle=\langle x| \hat{\mathcal{T}}^{\dagger}(d x) \hat{\mathcal{T}}(d x)|x\rangle=\langle x+d x \mid x+d x\rangle \tag{10}
\end{equation*}
$$

where $\langle x|$ and $|x\rangle$ correspond to the bra and ket states in Dirac's notation, respectively. $\hat{\mathcal{T}}^{\dagger}$ denotes the adjoint of the operator $\hat{\mathcal{T}}$. An operator is hermitian if it is self-adjoint, i.e.,

$$
\hat{O}=\hat{O}^{\dagger}
$$

2. Addition: The operations are additive, i.e.,

$$
\begin{equation*}
\hat{\mathcal{T}}\left(d x_{1}\right) \hat{\mathcal{T}}\left(d x_{2}\right)|x\rangle=\hat{\mathcal{T}}\left(d x_{1}+d x_{2}\right)|x\rangle . \tag{11}
\end{equation*}
$$

3. Inverse: There should be an inverse operator, denoted as $\hat{\mathcal{T}}^{-1}$ to satisfy

$$
\begin{equation*}
\hat{\mathcal{T}}^{-1}(d x)=\hat{\mathcal{T}}(-d x) \tag{12}
\end{equation*}
$$

4. Identity: As $d x \rightarrow 0$, we should have

$$
\begin{equation*}
\lim _{d x \rightarrow 0} \hat{\mathcal{T}}(d x)=\hat{\mathcal{I}} \tag{13}
\end{equation*}
$$

To satisfy these four properties, we assume the generator of translation has the form:

$$
\begin{equation*}
\hat{\mathcal{T}}(d x)=\hat{\mathcal{I}}-i \hat{k} \cdot d x=\hat{\mathcal{I}}-i \frac{\hat{p}}{\hbar} \cdot d x \tag{14}
\end{equation*}
$$

where de Broglie's relation is used $\hbar \hat{k}=\hat{p}$ and $k=2 \pi / \lambda$. Note that

$$
\begin{align*}
& \hat{x} \hat{\mathcal{T}}\left(d x^{\prime}\right)\left|x^{\prime}\right\rangle=\left(x^{\prime}+d x^{\prime}\right)\left|x^{\prime}+d x^{\prime}\right\rangle,  \tag{15}\\
& \hat{\mathcal{T}}\left(d x^{\prime}\right) \hat{x}\left|x^{\prime}\right\rangle=x^{\prime}\left|x^{\prime}+d x^{\prime}\right\rangle, \tag{16}
\end{align*}
$$

hence, we have the commutator $[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}$ as

$$
\begin{equation*}
\left[\hat{x}, \hat{\mathcal{T}}\left(d x^{\prime}\right)\right]=d x^{\prime} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i \hbar \tag{18}
\end{equation*}
$$

By extending to a general form, we have the commutation relation for the position and momentum operators,

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j} . \tag{19}
\end{equation*}
$$

## B. $x$ - and $p$-representations

We use $|x\rangle$ and $|p\rangle$ for the states representations in the position and momentum spaces, respectively,

$$
\begin{align*}
\hat{x}|x\rangle & =x|x\rangle  \tag{20}\\
\hat{p}|p\rangle & =p|p\rangle \tag{21}
\end{align*}
$$

The transformation between these two spaces is

$$
\begin{align*}
\hat{p}|x\rangle & =-i \hbar \frac{\partial}{\partial x}|x\rangle  \tag{22}\\
\hat{x}|p\rangle & =i \hbar \frac{\partial}{\partial p}|p\rangle  \tag{23}\\
\langle x \mid p\rangle & =\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p x}{\hbar}\right) . \tag{24}
\end{align*}
$$

There is a Fourier transform between two representations:

$$
\begin{align*}
& \psi(x)=\langle x \mid \phi\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \int d p \exp \left(\frac{i p x}{\hbar}\right) \Psi(p)  \tag{25}\\
& \Psi(p)=\langle p \mid \phi\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \int d x \exp \left(\frac{-i p x}{\hbar}\right) \psi(x) \tag{26}
\end{align*}
$$

## C. Schrödinger's picture

The equation of motion of a quantum state is described by the Schrödinger's equation:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\phi\rangle=\hat{H}|\phi\rangle \tag{27}
\end{equation*}
$$

For the eigen-state of SHO Hamiltonian,

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \frac{\hat{p}^{2}}{m}+\frac{1}{2} k \hat{x}^{2}, \tag{28}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left[\frac{d^{2}}{d x^{2}}+\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} k x^{2}\right)\right] \psi(x)=0 \tag{29}
\end{equation*}
$$

where $\Phi(x, t)=\langle x \mid \phi\rangle \exp (-i E t / \hbar)=\psi(x) \exp (-i E t / \hbar)$ denotes the state in the $x$-representation. By defining the new variable $\xi=\sqrt{\frac{m \omega}{\hbar}} x$, we have the Hermite equation,

$$
\begin{equation*}
\left[\frac{d^{2}}{d \xi^{2}}+\left(\epsilon-\xi^{2}\right)\right] \psi(\xi)=0, \quad \epsilon=\frac{2 E}{\hbar \omega} \tag{30}
\end{equation*}
$$

which gives the Hermite-Gaussian solutions associated with Hermite polynomials $H_{n}$

$$
\begin{equation*}
\psi(\xi)=H_{n}(\xi) \exp \left[-\xi^{2} / 2\right], \quad \epsilon=2 n+1, \quad n=0,1,2,3 \ldots \tag{31}
\end{equation*}
$$

For the corresponding eigen-energy:

$$
\begin{equation*}
E=\frac{\hbar \omega}{2} \epsilon=\hbar \omega\left(n+\frac{1}{2}\right), \quad n=0,1,2,3, \ldots \tag{32}
\end{equation*}
$$

The ground state of a SHO is denoted as $|0\rangle$, which in the $x$-representation is

$$
\begin{equation*}
\Psi(x)=\langle x \mid 0\rangle=c_{0} \exp \left[-\xi^{2} / 2\right], \quad \text { where } c_{0} \text { is a normalization constant } \tag{33}
\end{equation*}
$$

and the eigen-energy of the ground state is $E_{0}=\hbar \omega / 2$.

## D. Heisenburg's picture

In terms of the operators, $[\hat{x}, \hat{p}]=i \hbar$, we can introduce the creation $\left(\hat{a}^{\dagger}\right)$ and annihilation $(\hat{a})$ operators, respectively,

$$
\begin{align*}
\hat{a} & =\frac{1}{\sqrt{2 m \hbar \omega}}[m \omega \hat{x}+i \hat{p}],  \tag{34}\\
\hat{a}^{\dagger} & =\frac{1}{\sqrt{2 m \hbar \omega}}[m \omega \hat{x}-i \hat{p}] . \tag{35}
\end{align*}
$$

Or

$$
\begin{align*}
& \hat{x}=\frac{\hbar}{\sqrt{2 m \hbar \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right),  \tag{36}\\
& \hat{p}=\frac{\sqrt{2 m \hbar \omega}}{2 i}\left(\hat{a}-\hat{a}^{\dagger}\right) . \tag{37}
\end{align*}
$$

The commutation relation for the creation and annihilation operators becomes

$$
\begin{equation*}
\left[\hat{a}, \hat{a}^{\dagger}\right]=1, \tag{38}
\end{equation*}
$$

and the associate SHO Hamiltonian is

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) . \tag{39}
\end{equation*}
$$

## E. Properties of the creation and annihilation operators

1. $\hat{a}$ and $\hat{a}^{\dagger}$ are NOT Hermitian operators. That is

$$
\hat{a} \neq \hat{a}^{\dagger},
$$

for which no real eigenvalue are generated.
2. Number operator: An Hermitian operator can be defined as

$$
\begin{equation*}
\hat{N} \equiv \hat{a}^{\dagger} \hat{a} \tag{40}
\end{equation*}
$$

3. The commutation relations with the SHO Hamiltonian are:

$$
\begin{align*}
{[\hat{H}, \hat{a}] } & =-\hbar \omega \hat{a},  \tag{41}\\
{\left[\hat{H}, \hat{a}^{\dagger}\right] } & =\hbar \omega \hat{a}^{\dagger} \tag{42}
\end{align*}
$$

4. Raising (step-up) and Lowering (step-down) operators: Consider the eigen-state of SHO Hamiltonian, $\hat{H}|\phi\rangle=$ $E|\phi\rangle$, then

$$
\begin{align*}
\hat{H} \hat{a}|\phi\rangle & =(E-\hbar \omega) \hat{a}|\phi\rangle  \tag{44}\\
\hat{H} \hat{a}^{\dagger}|\phi\rangle & =(E+\hbar \omega) \hat{a}^{\dagger}|\phi\rangle, \tag{45}
\end{align*}
$$

where $\hat{a}|\phi\rangle$ and $\hat{a}^{\dagger}|\phi\rangle$ are also eigen-states of SHO, but with the eigen-values $E-\hbar \omega$ and $E+\hbar \omega$, respectively. $|\phi\rangle$ is a discrete states, denoted as $|n\rangle$ in the following.
5. Ground state:

$$
\begin{align*}
\langle\phi| \hat{H}|\phi\rangle & =\hbar \omega\langle\phi| \hat{a}^{\dagger} \hat{a}+\frac{1}{2}|\phi\rangle, \\
& =\hbar \omega\langle\hat{a} \phi \mid \hat{a} \phi\rangle+\frac{\hbar \omega}{2} \geq \frac{\hbar \omega}{2} . \tag{46}
\end{align*}
$$

Based on above, we denote the ground state as $|n=0\rangle=|0\rangle$, with the energy $E_{0}=\frac{1}{2} \hbar \omega$, which is the eigen-state of

$$
\begin{equation*}
\hat{a}|0\rangle=0, \quad \text { the lowest energy state. } \tag{47}
\end{equation*}
$$

6. Exited state:

$$
\begin{equation*}
|n\rangle=\left(\hat{a}^{\dagger}\right)^{n}|0\rangle, \tag{48}
\end{equation*}
$$

with the energy

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) .
$$

7. Normalization constants:

$$
\begin{align*}
\hat{N}|n\rangle & =n|n\rangle  \tag{49}\\
\hat{a}|n\rangle & =C_{n}|n-1\rangle=\sqrt{n}|n-1\rangle,  \tag{50}\\
\hat{a}^{\dagger}|n\rangle & =C_{n+1}|n+1\rangle=\sqrt{n+1}|n+1\rangle, \tag{51}
\end{align*}
$$

where the normalization constant $C_{n}\left(C_{n+1}\right)$ can be derived by

$$
\begin{equation*}
\langle n| \hat{a}^{\dagger} \hat{a}|n\rangle=\langle n| \hat{N}|n\rangle=n=\left|C_{n}\right|^{2}\langle n-1 \mid n-1\rangle . \tag{52}
\end{equation*}
$$

8. Heisenberg's equation: The dynamics of the operator is governed by the Heisenberg's equation:

$$
\begin{equation*}
\frac{d}{d t} \hat{O}=\frac{1}{i \hbar}[\hat{O}, \hat{H}] \tag{53}
\end{equation*}
$$

For the annihilation operator of $\mathrm{SHO}, \hat{a}$, we have

$$
\begin{equation*}
\frac{d}{d t} \hat{a}=\frac{1}{i \hbar}\left[\hat{a}, \hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)\right]=-i \omega \hat{a}, \tag{54}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
\hat{a}(t)=\hat{a}(t=0) \exp [-i \omega t] . \tag{55}
\end{equation*}
$$

F. Quadrature Operators

One can define two hermitian operators

$$
\begin{align*}
& \hat{X}_{1}=\frac{1}{2}\left(\hat{a}+\hat{a}^{\dagger}\right),  \tag{56}\\
& \hat{X}_{2}=\frac{1}{2 i}\left(\hat{a}-\hat{a}^{\dagger}\right), \tag{57}
\end{align*}
$$

which have the commutator relation,

$$
\begin{equation*}
\left[\hat{X}_{1}, \hat{X}_{2}\right]=\frac{i}{2} \tag{58}
\end{equation*}
$$

## G. Related Topics:

- Abelian and non-Abelian Operators
- Interaction Picture
- Uncertainty Relation

