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I. MOLLOW’S TRIPLET: RESONANCE FLUORESCENCE SPECTRUM

Consider a two-level system driving by a classical field, with the following Hamiltonian, i.e., Jaynes-Cummings
model:

H =
~
2
ωaσz + ~

∑
k

ωka
†
kak +

Ω

2
~(σ−e

iωLt + σ+e
−iωLt) (1)

+ ~
∑
k

(gkσ+ak + g∗ka
†
kσ−). (2)

Here, we want to solve the generalized Bloch equations:

σ̇−(t) = i
Ω

2
σz(t)e

−i∆t +

∫ t

−∞
d t′G(t− t′)σz(t)σ−(t′) + n−(t) (3)

σ̇+(t) = −iΩ
2
σz(t)e

i∆t +

∫ t

−∞
d t′Gc(t− t′)σ+(t′)σz(t) + n+(t) (4)

σ̇z(t) = iΩ(σ−(t)ei∆t − σ+(t)e−i∆t) + nz(t) (5)

− 2

∫ t

−∞
d t′[G(t− t′)σ+(t)σ−(t′) +Gc(t− t′)σ+(t′)σ−(t)] (6)

Here, the coupling constant is defined as

gk ≡ gk(d̂,−→r 0) = |d|ωa
√

1

2~ε0ωkV
d̂ ·E∗k(−→r0), (7)
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with the memory functions:

G(τ) ≡
∑
k

|gk|2ei∆ktΘ(τ) (8)

Gc(τ) ≡
∑
k

|gk|2e−i∆ktΘ(τ). (9)

Within the Markovian approximation, we have

G(t) = Gc(t) = Γδ(t). (10)

The corresponding quantum noise operators defined above are

n−(t) = i
∑
k

gke
i∆ktσz(t)ak(−∞) (11)

n+(t) = −i
∑
k

g∗ke
−i∆kta+

k (−∞)σz(t) (12)

nz(t) = 2i
∑
k

[g∗ke
−i∆kta+

k (−∞)σ−(t)− gkei∆ktσ+(t)a+
k (−∞)] (13)

where the mean and the correlation functions of the reservoir before interaction:

< ak(−∞) >R=< a†k(−∞) >R= 0 (14)
< ak(−∞)ak′(−∞) >R= 0 (15)

< a†k(−∞)a†k′(−∞) >R= 0 (16)

< a†k(−∞)ak′(−∞) >R= n̄kδkk′ (17)

< ak(−∞)a†k′(−∞) >R= (n̄k + 1)δkk′ . (18)

A. Fluorescence spectrum

in the frequency domain, solutions for the optical Bloch equations are:

σ̃−(ω + ∆) =
(2g h+ Ω2) ñ−(ω) + Ω2 ñ+(ω) + iΩg ñz(ω)− i2πΩg[G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h
(19)

σ̃+(ω −∆) =
Ω2 ñ−(ω) + (2f h+ Ω2) ñ+(ω)− iΩf ñz(ω) + i2πΩf [G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h
(20)

σ̃z(ω) =
2iΩg ñ−(ω)− 2iΩf ñ+(ω) + 2f g ñz(ω)− 4πf g[G̃(ω) + G̃c(ω)]δ(ω)

Ω2(f + g) + 2f g h
(21)

where

f(ω) = −iω − i∆ + G̃(ω)

g(ω) = −iω + i∆ + G̃c(ω)

h(ω) = −iω + G̃(ω) + G̃c(ω).

For the two-time correlation function of the atomic dipole is proportional to the first order correlation function
g(1)(τ), we can obtain the fluorescence spectrum by taking the Fourier transform of the first order correlation function:

S(ω) =

∫ ∞
−∞

dτ g(1)(τ)eiωτ (22)

∝ 〈σ̃+(ω)σ̃−(−ω)〉R.

It should be noted that here we cannot directly apply the quantum regression theorem since it is invalid for non-
Markovian process.
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At free space, one can assume the memory functions are delta functions since
∑
k |gk|2ei∆kt = Γδ(t) with Γ being

the decay rate of the excited atom. Then, the noise correlation functions at zero temperature are also delta-function
correlated (i.e., white noises). Therefore, the fluorescence spectrum at steady state is given by:

〈σ̃+(ω)σ̃−(−ω)〉R =
π2Ω2(Γ2

4 + ∆2)
Ω2

2 + ∆2 + Γ2

4

δ(ω + ∆) (23)

+
πΓΩ4(Ω2

2 + Γ2 + (ω + ∆)2)

2(Ω2

2 + ∆2 + Γ2

4 )[Γ2(Ω2

2 + ∆2 + Γ2

4 − 2(ω + ∆)2)2 + (ω + ∆)2(Ω2 + ∆2 + 5
4Γ2 − (ω + ∆)2)2]

In the limit of strong on-resonance pumping (Ω� Γ, ∆ = 0), Eq.(23) can be reduced to:

〈σ̃+(ω)σ̃−(−ω)〉R = 2π{2π Γ2

4Ω2
δ(ω) +

3
16Γ

(ω + Ω)2 + 9
16Γ2

+
1
4Γ

ω2 + 1
4Γ2

+
3
16Γ

(ω − Ω)2 + 9
16Γ2

} (24)

Then, the resonance fluorescence spectrum exhibits the Mollow triplets for white noise: three Lorentzian profiles with
peaks in the ratio 1 : 3 : 1, and widths of 3

2Γ, Γ, and 3
2Γ.


