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I. COHERENT STATES

We introduce the eigenstate of annihilation operator, called the coherent state,
ala) = afa),

which in the basis of number states has the form,

@) = Slednla),  for 3 [ninl =
an ahnr
SOl for =20,

)n),

&

n

I
M
2%

By imposing the normalization condition, («|a) = 1, we obtain,

1= (ala) = sz\gf el (0] .

Now, the coherent state |«) has the Poisson distribution in the photon number,
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A. Displacement operator

Coherent states can be generated by translating the vacuum state |0) to have a finite excitation amplitude «,
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Since @|0) = 0, we have e=®"%|0) = 0 and
la) = e_%|a|2eadfe_o‘*&|0>. 9)
Furthermore, for any two non-commuting operators A and B, we have the Baker-Hausdorff relation,
eAtB = eAcBe3lAB] provided [A,[A,B]] =0, (10)
By using A = adl, B = —a*a, and [A, B] = |a|?, we have,

la) = D(a)|0) = e+od'—a"a|g), (11)

where ﬁ(a) is the displacement operator, which is physically realized by a classical oscillating current. In this way,
the coherent state is displaced from the ground state of a simple harmonic oscillator. That is

a aat—a*a
) = D(a)[0) = e* |0). (12)
The displacement operator D(«) is a unitary operator, i.e.,
D' (a) = D(=a) = [D(a)] ", (13)
and ﬁ(a) acts as a displacement operator upon the amplitudes @ and af, i.e.,

a+ «, (14)
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B. Properties of Coherent States

1. The probability of finding n photons in |«a) is given by a Poisson distribution.
2. The coherent state is a minimum-uncertainty states,

3. The set of all coherent states |a) is a complete set,
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4. Two coherent states corresponding to different eigenstates a and 8 are not orthogonal,
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(al6) = exp(—5lal® + 0”8 — 5|P) = exp(~3la — B2). (1)

5. Coherent states are approzimately orthogonal only in the limit of large separation of the two eigenvalues, |a—g| —
o0o. Therefore, any coherent state can be expanded using other coherent state,

) = % / d*B1B)(Bla) = % / d*Be310=2|g). (18)

This means that a coherent state forms an overcomplete set.

6. The simultaneous measurement of @; and ds, represented by the projection operator |a)(«/, is not an exact
measurement but instead an approximate measurement with a finite measurement error.



C. g¢-representation of the coherent state

Since the coherent state is defined as the eigenstate of the annihilation operator,

ale) = ala),

where a = ;hw (wq + ip), then the g-representation of the coherent state is governed by,
0
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with the solution,
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where 6 is an arbitrary real phase,



II. EXPECTATION VALUE OF THE ELECTRIC FIELD

For a single mode electric field, polarized in the z-direction,
E, = Eola(t) + a' ()] sin kz, (21)
the expectation value of the electric field operator is
(a|E(t)|a) = Eolae ™! + a*e™!]|sin kz = 2Ey|a| cos(wt + ¢) sin kz. (22)
Similar, we have
(a|E(t)?|a) = E2[4]al? cos?(wt + ¢) 4 1] sin? kz, (23)

and the corresponding variance, the root-mean-square deviation, in the electric field is,

(AE(t))Y? =] 2qu | sin kz|, (24)

We note that the variance, (AF(t)?)'/2, is independent of the field strength |o|. That means the quantum noise
becomes less important as |a|? increases, and why a highly excited coherent state || > 1 can be treated as a classical
EM field.

A. Generation of Coherent States

In classical mechanics we can excite a SHO into motion by, e.g. stretching the spring to a new equilibrium position,
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By turning off the DC field, i.e., Ey = 0, we will have a coherent state |«) oscillating without changing its shape. In
analogy, applying the DC field to the SHO is mathematically equivalent to applying the displacement operator to the
state |0).



