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I. COHERENT STATES

We introduce the eigenstate of annihilation operator, called the coherent state,

â|α〉 = α|α〉, (1)

which in the basis of number states has the form,

|α〉 =
∑
n

|n〉〈n|α〉, for
∑
n

|n〉〈n| = 1, (2)

=
∑
n

|n〉〈0| â
n

√
n!
|α〉, for |n〉 =

(â†)n√
n!
|0〉, (3)

=
∑
n

αn√
n!
〈0|α〉|n〉, (4)

By imposing the normalization condition, 〈α|α〉 = 1, we obtain,

1 = 〈α|α〉 =
∑
n

∑
m

〈m|n〉 (α
∗)mαn√
m!
√
n!

= e|α|
2

|〈0|α〉|2. (5)

Now, the coherent state |α〉 has the Poisson distribution in the photon number,

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉. (6)

A. Displacement operator

Coherent states can be generated by translating the vacuum state |0〉 to have a finite excitation amplitude α,

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 = e−

1
2 |α|

2
∞∑
n=0

(αâ†)n

n!
|0〉, (7)

= e−
1
2 |α|

2

eαâ
†
|0〉. (8)
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Since â|0〉 = 0, we have e−α
∗â|0〉 = 0 and

|α〉 = e−
1
2 |α|

2

eαâ
†
e−α

∗â|0〉. (9)

Furthermore, for any two non-commuting operators Â and B̂, we have the Baker-Hausdorff relation,

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂], provided [Â, [Â, B̂]] = 0, (10)

By using Â = αâ†, B̂ = −α∗â, and [Â, B̂] = |α|2, we have,

|α〉 = D̂(α)|0〉 = e+αâ
†−α∗â|0〉, (11)

where D̂(α) is the displacement operator, which is physically realized by a classical oscillating current. In this way,
the coherent state is displaced from the ground state of a simple harmonic oscillator. That is

|α〉 = D̂(α)|0〉 = e+αâ
†−α∗â|0〉. (12)

The displacement operator D̂(α) is a unitary operator, i.e.,

D̂†(α) = D̂(−α) = [D̂(α)]−1, (13)

and D̂(α) acts as a displacement operator upon the amplitudes â and â†, i.e.,

D̂−1(α)âD̂(α) = â+ α, (14)

D̂−1(α)â†D̂(α) = â† + α∗. (15)

B. Properties of Coherent States

1. The probability of finding n photons in |α〉 is given by a Poisson distribution.

2. The coherent state is a minimum-uncertainty states,

3. The set of all coherent states |α〉 is a complete set,∫
|α〉〈α|d2α = π

∑
n

|n〉〈n|, or
1

π

∫
|α〉〈α|d2α = 1. (16)

4. Two coherent states corresponding to different eigenstates α and β are not orthogonal,

〈α|β〉 = exp(−1

2
|α|2 + α∗β − 1

2
|β|2) = exp(−1

2
|α− β|2). (17)

5. Coherent states are approximately orthogonal only in the limit of large separation of the two eigenvalues, |α−β| →
∞. Therefore, any coherent state can be expanded using other coherent state,

|α〉 =
1

π

∫
d2β|β〉〈β|α〉 =

1

π

∫
d2βe−

1
2 |β−α|

2

|β〉. (18)

This means that a coherent state forms an overcomplete set.

6. The simultaneous measurement of â1 and â2, represented by the projection operator |α〉〈α|, is not an exact
measurement but instead an approximate measurement with a finite measurement error.
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C. q-representation of the coherent state

Since the coherent state is defined as the eigenstate of the annihilation operator,

â|α〉 = α|α〉,

where â = 1√
2~ω (ωq̂ + ip̂), then the q-representation of the coherent state is governed by,

(ωq + ~
∂

∂q
)〈q|α〉 =

√
2~ωα〈q|α〉, (19)

with the solution,

〈q|α〉 = (
ω

π~
)1/4exp[− ω

2~
(q − 〈q〉)2 + i

〈p〉
~
q + iθ], (20)

where θ is an arbitrary real phase,
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II. EXPECTATION VALUE OF THE ELECTRIC FIELD

For a single mode electric field, polarized in the x-direction,

Êx = E0[â(t) + â†(t)] sin kz, (21)

the expectation value of the electric field operator is

〈α|Ê(t)|α〉 = E0[αe−iωt + α∗eiωt] sin kz = 2E0|α| cos(ωt+ φ) sin kz. (22)

Similar, we have

〈α|Ê(t)2|α〉 = E2
0 [4|α|2 cos2(ωt+ φ) + 1] sin2 kz, (23)

and the corresponding variance, the root-mean-square deviation, in the electric field is,

〈∆Ê(t)2〉1/2 =

√
~ω

2ε0V
| sin kz|, (24)

We note that the variance, 〈∆Ê(t)2〉1/2, is independent of the field strength |α|. That means the quantum noise
becomes less important as |α|2 increases, and why a highly excited coherent state |α| � 1 can be treated as a classical
EM field.

A. Generation of Coherent States

In classical mechanics we can excite a SHO into motion by, e.g. stretching the spring to a new equilibrium position,

Ĥ =
p2

2m
+

1

2
kx2 − eE0x, (25)

=
p2

2m
+

1

2
k(x− eE0

k
)2 − 1

2
(
eE0

k
)2, (26)

(27)

By turning off the DC field, i.e., E0 = 0, we will have a coherent state |α〉 oscillating without changing its shape. In
analogy, applying the DC field to the SHO is mathematically equivalent to applying the displacement operator to the
state |0〉.


