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I. DAMPING VIA OSCILLATOR RESERVOIR

Consider a single-mode field, with frequency ω, â and â† operators. Here, we introduce the concept of reservoir,
which may be taken as any large collection of systems with many degrees (e.g. phonons, other photon modes, etc),
with closely spaced frequencies νk, b̂k and b̂†k operators. The Hamiltonian for the field-reservoir system is

Ĥ = ~ωâ†â+
∑
k

~νk b̂†b̂+
∑
k

~gk(b̂†kâ+ â†b̂k). (1)

The corresponding Heisenberg equations of motion for the operators are

d
dt
â(t) =

i

~
[Ĥ, â] = −iωâ(t)− i

∑
k

gk b̂k(t), (2)

d
dt
b̂k(t) = −iνk b̂(t)− igkâ(t). (3)

The closed equation for the field operator â(t) is,

b̂k(t) = b̂k(0)e−iνkt − igk
∫ ∞

0

dt′e−iνk(t−t′)â(t′), (4)

d
dt
â(t) = −iωâ(t)−

∑
k

|gk|2
∫ ∞

0

dt′e−iνk(t−t′)â(t′) + f̂a(t), (5)

where

f̂a(t) = −i
∑
k

gk b̂k(0)e−iνkt.

If we define the slowly varying operator â′(t) = âeiωt, then

d
dt
â′(t) = −

∑
k

|gk|2
∫ ∞

0

dt′e−i(νk−ω)(t−t′)â′(t′) + F̂a(t), (6)

F̂a(t) = −i
∑
k

gk b̂k(0)e−i(νk−ω)t. (7)

In the following formulations, we use the notation â(t) to replace â′(t).
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II. MARKOVIAN WHITE NOISE

For a single-mode field interacting with reservoir, we have

d
dt
â(t) = −

∑
k

|gk|2
∫ ∞

0

dt′e−i(νk−ω)(t−t′)â(t′) + F̂a(t), (8)

F̂a(t) = −i
∑
k

gk b̂k(0)e−i(νk−ω)t. (9)

With the Weisskopf-Wigner theory, G(t) = Γ
2 δ(t),∑

k

|gk|2
∫ ∞

0

dt′e−i(νk−ω)(t−t′)â(t′) ≡
∫ ∞

0

dt′G(t− t′)â(t′) ≈ Γ

2
â(t), (10)

where G(t− t′) =
∑
k |gk|2e−i(νk−ω)(t−t′) =

∫
ν
D(ν)|g(ν)|2e−i(νk−ω)(t−t′), D(ν) is the density of state for the reservoir,

and the equation of motion for the field interacting with the reservoir is

d
dt
â(t) = −Γ

2
â(t) + F̂a(t). (11)

These are dissipation and fluctuation terms.
For a Markovian process, we have

d
dt
â(t) = −Γ

2
â(t) + F̂a(t), F̂a(t) = −i

∑
k

gk b̂k(0)e−i(νk−ω)t. (12)

If one dismiss the fluctuation term F̂a(t), i.e.,

d
dt
â(t) = −Γ

2
â(t), (13)

we have the solution â(t) = â(0)e−Γ/2t.
For the non-interacting field, the commutation relation at t = 0 is [â(0), â†(0)] = 1, but as time evolves to t 6= 0,

the commutation relation is not satisfied,

[â(t), â†(t)] = exp(−Γt). (14)

The noise operator with appropriate correlation properties helps to maintain the commutation relation at all time.

III. THERMAL RESERVOIR

For thermal reservoir, the noise operator is defined as,

F̂a(t) = −i
∑
k

gk b̂k(0)e−i(νk−ω)t. (15)

Suppose the reservoir is in thermal equilibrium, we have

< bk(0) >R=< b†k(0) >R= 0 (16)

< bk(0)bk′(0) >R= 0 < b†k(0)b†k′(0) >R= 0 (17)

< b†k(0)bk′(0) >R= n̄thδkk′ (18)

< bk(0)b†k′(0) >R= (n̄th + 1)δkk′ (19)
(20)

where

n̄th = 〈n〉 =
∑
n

nρnn =
1

exp(~νk/kBT )− 1
.
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The noise operator for thermal reservoir is defined as,

F̂a(t) = −i
∑
k

gk b̂k(0)e−i(νk−ω)t. (21)

Here, in general, we call it as the Langevin noise operator, which has zero means

〈F̂a(t)〉R = 〈F̂ †a (t)〉R = 0, (22)

but non-zero variances,

〈F̂ †a (t)F̂a(t′)〉R =
∑
k

∑
k′

gkgk′〈b̂†k b̂k′〉exp[i(νk − ω)t− i(νk′ − ω)t′], (23)

=
∑
k

|gk|2n̄kexp[i(νk − ω)(t− t′)], (24)

= Γn̄thδ(t− t′), (25)

where n̄th = n̄(νk−ω).

IV. FLUCTUATION-DISSIPATION THEORY

For a single-mode field interacting with thermal reservoir, we have

d
dt
â(t) = −Γ

2
â(t) + F̂a(t). (26)

The Langevin noise operators have zero means but non-zero variances,

〈F̂a(t)〉R = 〈F̂ †a (t)〉R = 0, (27)

〈F̂ †a (t)F̂ †a (t′)〉R = 〈F̂a(t)F̂a(t′)〉R = 0, (28)

〈F̂ †a (t)F̂a(t′)〉R = Γn̄thδ(t− t′), (29)

〈F̂a(t)F̂ †a (t′)〉R = Γ(n̄th + 1)δ(t− t′). (30)

The damping of the system is determined from the fluctuating forces of the reservoir, in other words, the fluctuations
induced by the reservoir give rise to the dissipation in the system,

Γ =
1

n̄th

∫ ∞
−∞

dt′〈F̂ †a (t)F̂a(t′)〉R. (31)

This is one formulation of the fluctuation-dissipation theorem.


