Note for Quantum Optics:

Density Matrix

Ray-Kuang Lee ${ }^{1}$
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300, Taiwan
(Dated: Spring, 2021)

[Reference:]

- J. J. Sakurai, "Modern Quantum Mechanics," Addison Wesley (1994).
- P. A. M. Dirac, "The Principle of Quantum Mechanics," Oxford (1984).
- C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, "Photons \& Atoms", John Wiley \& Sons (1989).
- A. Goswami, "Quantum Mechanics, " WCB Publishers (1992).

A. Notations:

- State properties:

1. quantum state: $|\Psi\rangle=\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle$,
2. completeness: $\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=I$, or $\int d x|x\rangle\langle x|$.
3. probability interpretation (projection): $\Psi(x)=\langle x \mid \Psi\rangle$,

- Operators:

1. operator: $\hat{A}|\Psi\rangle=|\Phi\rangle$,
2. representation: $\langle\phi| \hat{A}|\psi\rangle$,
3. adjoint of $\hat{A}:\langle\phi| \hat{A}|\psi\rangle=\langle\psi| \hat{A}^{\dagger}|\phi\rangle^{*}$,
4. Hermitian operator: $\hat{H}=\hat{H}^{\dagger}$, self-adjoint.
5. unitary operator: $\hat{U} \hat{U}^{\dagger}=\hat{U}^{\dagger} \hat{U}=I$.
6. \hat{U} can be represented as $\hat{U}=\exp (i \hat{H})$ if \hat{H} is Hermitian.
7. normal operator: $\left[\hat{A}, \hat{A}^{\dagger}\right]=0$, the eigenstates of only a normal operator are orthonormal.
8. hermitian and unitary operators are normal operators.
9. The sum of the diagonal elements $\langle\phi| \hat{A}|\psi\rangle$ is call the trace of \hat{A},

$$
\begin{equation*}
\operatorname{Tr}(\hat{A})=\sum_{i}\left\langle\phi_{i}\right| \hat{A}\left|\phi_{i}\right\rangle \tag{1}
\end{equation*}
$$

The value of the trace of an operator is independent of the basis.
10. The eigenvalues of a hermitian operator are real, $\hat{H}|\Psi\rangle=\lambda|\Psi\rangle$, where λ is real.

- Commutator:

1. If \hat{A} and \hat{B} do not commute then they do not admit a common set of eigenvectors.
2. If \hat{A} and \hat{B} are hermitian operators corresponding to classical dynamical variables a and b, then the commutator of \hat{A} and \hat{B} is given by

$$
\begin{equation*}
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}=i \hbar\{a, b\} \tag{2}
\end{equation*}
$$

where $\{a, b\}$ is the classical Poisson bracket.

- Measurement:

1. Each act of measurement of an observable \hat{A} of a system in state $|\Psi\rangle$ collapses the system to an eigenstate $\left|\psi_{i}\right\rangle$ of \hat{A} with probability $\left|\left\langle\phi_{i} \mid \Psi\right\rangle\right|^{2}$.
2. The average or the expectation value of \hat{A} is given by

$$
\langle\hat{A}\rangle=\sum_{i} \lambda_{i}\left|\left\langle\phi_{i} \mid \Psi\right\rangle\right|^{2}=\langle\Psi| \hat{A}|\Psi\rangle,
$$

where λ_{i} is the eigenvalue of \hat{A} corresponding to the eigenstate $\left|\psi_{i}\right\rangle$.

I. DENSITY OPERATOR

For the quantum mechanical description, if we know that the system is in state $|\psi\rangle$, then an operator \hat{O} has the expectation value,

$$
\langle\hat{O}\rangle_{\mathrm{qm}}=\langle\psi| \hat{O}|\psi\rangle .
$$

But, typically, we do not know that we are in state $|\psi\rangle$, then an ensemble average must be performed,

$$
\left\langle\langle\hat{O}\rangle_{\mathrm{qm}}\right\rangle_{\mathrm{ensemble}}=\sum_{n} P_{n}\left\langle\psi_{n}\right| \hat{O}\left|\psi_{n}\right\rangle,
$$

where the P_{n} is the probability of being in the state $\left|\psi_{n}\right\rangle$ and we introduce a density operator,

$$
\hat{\rho}=\sum_{n} P_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| .
$$

The expectation value of any operator \hat{O} is given by,

$$
\langle\hat{O}\rangle_{\mathrm{qm}}=\operatorname{Tr}[\hat{\rho} \hat{O}]
$$

where Tr stands for trace.

A. Positive-semi-definite of Density Matrix:

The density operator is strictly non-negative, that is it has only non-negative eigenvalues, because for all $|\psi\rangle$,

$$
\langle\psi| \hat{\rho}|\psi\rangle=\sum_{n} P_{n}\left|\left\langle\psi_{n} \mid \psi_{n}\right\rangle\right|^{2} \geq 0
$$

Or equivalently, for $\mathrm{A} n \times n$ Hermitian complex matrix \mathcal{M} is said to be positive-semi-definite or or non-negative definite if

$$
\vec{x}^{*} \mathcal{M} \vec{x} \geq 0, \quad \text { for all } \quad \vec{x} \in \mathbb{C}^{n}
$$

where \vec{x}^{*} is the conjugate transpose of \vec{x}.
Representing $\hat{\rho}$ in the eigenbasis, the eigenvalues of $\hat{\rho}$ can be interpreted as probabilities (because they must be normalized and non-negative) for the eigenstates.

However, for mixed states, there is no unique way of telling whether statistical fluctuations of observed quantities are caused

- by fluctuations in the state preparation (due to the lack of knowledge), or
- by fluctuations caused by the measurement process (due to the lack of complete control).

B. Von Neumann entropy:

How can we discriminate pure from mixed states, or more generally, characterize the purity of a state? One option is the von Neumann entropy, i.e.,

$$
S=-k_{B} \operatorname{tr}[\hat{\rho} \ln \hat{\rho}],
$$

where k_{B} denotes the Boltzmann constant.

- $S(\rho)$ is zero if and only if ρ represents a pure state.
- $S(\rho)$ is maximal and equal to $\ln N$ for a maximally mixed state, N being the dimension of the Hilbert space.
- $S(\rho)$ is invariant under changes in the basis of ρ, that is, $S(\rho)=S\left(\hat{U} \rho \hat{U}^{\dagger}\right)$, with \hat{U} a unitary transformation.
- $S(\rho)$ is additive for independent systems. Given two density matrices ρ_{A}, ρ_{B} describing independent systems A and B, we have

$$
S\left(\rho_{A} \otimes \rho_{B}\right)=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)
$$

C. Purity of quantum states:

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

$$
\gamma \equiv \operatorname{tr}\left[\hat{\rho}^{2}\right]
$$

where $\hat{\rho}$ is the density matrix of the state. The purity defines a measure on quantum states, giving information on how much a state is mixed.

- The purity of a normalized quantum state satisfies

$$
\frac{1}{d} \leq \gamma \leq 1
$$

where d is the dimension of the Hilbert space upon which the state is defined.

- The upper bound is obtained by $\operatorname{tr}(\rho)=1$ and

$$
\operatorname{tr}\left(\hat{\rho}^{2}\right) \leq \operatorname{tr}(\hat{\rho})=1
$$

D. Examples:

1. $|\Psi\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle$, where $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}$, orthonormal.
2. $\langle\Psi \mid \Psi\rangle=1$, normalization condition: $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$.
3. Pure states: let $|\Psi\rangle=\frac{1}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\phi_{2}\right\rangle$, then we have

$$
\begin{align*}
& \hat{\rho}_{1}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{-1} ; \tag{3}\\
& \hat{\rho}_{2}=\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{-1} ; \tag{4}\\
& \hat{\rho}_{\Psi}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)^{-1} \tag{5}
\end{align*}
$$

4. Mixed states: let $\hat{\rho}_{\text {mix }}=\frac{1}{2} \hat{\rho}_{1}+\frac{1}{2} \hat{\rho}_{2}$, then we have

$$
\begin{align*}
\hat{\rho}_{m i x} & =\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{d} \bar{I}_{d} ; \quad(d=2) \tag{6}\\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)^{-1} ; \tag{7}
\end{align*}
$$

5. Purity:

$$
\begin{align*}
& \operatorname{tr}\left(\hat{\rho}_{1}^{2}\right)=1 \tag{8}\\
& \operatorname{tr}\left(\hat{\rho}_{2}^{2}\right)=1 \tag{9}\\
& \operatorname{tr}\left(\hat{\rho}_{\Psi}^{2}\right)=1 \tag{10}\\
& \operatorname{tr}\left(\hat{\rho}_{\text {mix }}^{2}\right)=1 / 2 \tag{11}
\end{align*}
$$

II. POISSON DISTRIBUTION

Coherent state $|\alpha\rangle$ has the Poisson distribution in the photon number,

$$
\begin{equation*}
|\alpha\rangle=e^{-\frac{1}{2}|\alpha|^{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle . \tag{13}
\end{equation*}
$$

A. i.i.d. limit:

For photons are independent of each other, the probability of occurrence of n photons, or photoelectrons in a time interval T is random. Divide the time period T into N intervals, the probability to find one photon per interval is, $p=\bar{n} / N$; while the probability to find no photon per interval is, $1-p$. Then we have the probability to find n photons per interval is,

$$
\begin{equation*}
P(n)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n} \tag{14}
\end{equation*}
$$

which is a binomial distribution.
By substituting $p=\bar{n} / N$, we have

$$
\begin{equation*}
P(n)=\frac{1}{n!} \frac{N!}{(N-n)!N^{n}} \bar{n}^{n}\left(1-\frac{\bar{n}}{N}\right)^{N-n} . \tag{15}
\end{equation*}
$$

Stirling's formula:

$$
\begin{align*}
\ln (N!) & =\ln 1+\ln 2+\cdots+\ln N, \tag{16}\\
& \approx \int_{1}^{N} \ln x d x, \quad \text { i.e., } \quad \int \ln x d x=x \ln x-x, \tag{17}\\
& =N \ln N-N+1, \tag{18}\\
& \approx N \ln N-N . \tag{19}
\end{align*}
$$

When the number of photons is large enough, i.e., $N \rightarrow \infty$, one has

$$
\begin{align*}
\lim _{N \rightarrow \infty} \ln \left(\frac{N!}{(N-n)!N^{n}}\right) & =N \ln N-N-N \ln (N-n)+n \ln (N-n)+N-n-n \ln N \tag{20}\\
& =0, \quad \text { note: } \quad N \gg n \tag{21}
\end{align*}
$$

or

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(\frac{N!}{(N-n)!N^{n}}\right)=1 . \tag{22}
\end{equation*}
$$

In the same way,

$$
\begin{align*}
\left(1-\frac{\bar{n}}{N}\right)^{N-n} & =1-(N-n) \frac{\bar{n}}{N}+\frac{1}{2!}(N-n)(N-n-1)\left(\frac{\bar{n}}{N}\right)^{2}+\ldots \tag{23}\\
& \approx 1-\frac{\bar{n}}{1!}+\frac{\bar{n}^{2}}{2!}-\ldots \tag{24}\\
& =e^{-\bar{n}} \tag{25}
\end{align*}
$$

In the limit, $N \rightarrow \infty$, the probability for photon number becomes

$$
\begin{align*}
P(n) & =\frac{\bar{n}^{n} \exp (-\bar{n})}{n!}, \tag{26}\\
& =\frac{|\alpha|^{2 n} \exp \left(-|\alpha|^{2}\right)}{n!}, \tag{27}
\end{align*}
$$

where $\bar{n} \equiv|\alpha|^{2}$. This is the Poisson distribution and the characteristics of coherent light. Note that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P(n)=1 \tag{28}
\end{equation*}
$$

B. Mean and Variance

The probability of finding the photon number n in the Poisson distribution is

$$
\begin{equation*}
P(n) \equiv|\langle n \mid \alpha\rangle|^{2}=\frac{e^{-|\alpha|^{2}}|\alpha|^{2 n}}{n!} \tag{29}
\end{equation*}
$$

for which the mean and variance of photon number are,

$$
\begin{align*}
\langle\hat{n}\rangle & =\sum_{n} n P(n)=|\alpha|^{2} \equiv \bar{n}, \tag{30}\\
\left\langle\Delta \hat{n}^{2}\right\rangle & =\left\langle\hat{n}^{2}\right\rangle-\langle\hat{n}\rangle^{2}=|\alpha|^{2}=\langle\hat{n}\rangle . \tag{31}
\end{align*}
$$

III. THERMAL STATES

By applying density matrix for the mixed states, we define the thermal states as

$$
\begin{align*}
& \rho_{t h}=\sum_{n} P(n)|n\rangle\langle n|, \tag{32}\\
& \text { with } \quad P(n)=\frac{1}{\bar{n}+1}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}, \bar{n}=\frac{1}{\exp \left[\hbar \omega / k_{B} T\right]-1} . \tag{33}
\end{align*}
$$

A. Boltzmann's law

In the quantized EM fields, the eigen-energies of photons are discrete,

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) .
$$

Accordingly to the Boltzmann's law, the probability to find a state with the energy E_{n} is proportional to

$$
P(n) \propto \exp \left[-E_{n} / k_{B} T\right],
$$

where T denotes the temperature, and k_{B} is the Boltzmann's constant. Then, to find n photons in the mode with the energy E_{n} is

$$
\begin{align*}
P(n) & =\frac{\exp \left[-E_{n} / k_{B} T\right]}{\sum_{n=0}^{\infty} \exp \left[-E_{n} / k_{B} T\right]}, \tag{34}\\
& =\exp \left[-E_{n} / k_{B} T\right]\left(1-\exp \left[-\hbar \omega / k_{B} T\right]\right) ; \quad E_{n}=n \hbar \omega \tag{35}
\end{align*}
$$

The mean photon number following Boltzmann's law is

$$
\begin{equation*}
\bar{n}=\sum_{n=0}^{\infty} n P(n)=\frac{1}{\exp \left[\hbar \omega / k_{B} T\right]-1}, \tag{36}
\end{equation*}
$$

which gives the Planck formula. In terms of the mean photon number \bar{n}, the probability to find n photons is

$$
\begin{equation*}
P(n)=\frac{1}{\bar{n}+1}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}, \tag{37}
\end{equation*}
$$

which is called the Bose-Einstein distribution, and used as the distribution function for the thermal light source from the black-body radiations.

The variance of the Bose-Einstein distribution is

$$
\begin{equation*}
\Delta n^{2}=\bar{n}+\bar{n}^{2} \tag{38}
\end{equation*}
$$

which is larger than that of a Poisson distribution.

B. Thermal light

The electromagnetic radiation emitted by a hot body is generally called thermal light, or black-body radiance. The energy density within the angular frequency range ω to $\omega+d \omega$ is given by the Planck's law:

$$
\begin{align*}
\rho(\omega, T) & =\text { DOS } \cdot \text { mean number of photons } \cdot \text { energy per photon } d \omega \tag{39}\\
& =\frac{\hbar \omega^{2}}{\pi^{2} c^{3}} \hbar \omega \bar{n} d \omega \tag{40}\\
& =\frac{\hbar \omega^{3}}{\pi^{2} c^{3}} \frac{1}{\exp \left[\hbar \omega / k_{B} T\right]-1} d \omega . \tag{41}
\end{align*}
$$

C. Statistics

Follow the Boltzmann's law, the expectation value the energy is given by

$$
\begin{equation*}
\langle E\rangle=\sum_{n} E_{n} P\left(E_{n}\right)=\frac{\sum_{n} E_{n} \exp \left[-E_{n} / k_{B} T\right]}{\sum_{n} \exp \left[-E_{n} / k_{B} T\right]} . \tag{42}
\end{equation*}
$$

Here the energy is quantized, $E_{n}=n \hbar \omega$. We can define the variable

$$
\beta \equiv \frac{1}{k_{B} T},
$$

and take the partial derivative of the mean energy with respect to β, that is,

$$
\begin{equation*}
\frac{\partial\langle E\rangle}{\partial \beta}=-\left\langle E^{2}\right\rangle+\langle E\rangle^{2} . \tag{43}
\end{equation*}
$$

Then, we can find the variance of energy

$$
\begin{equation*}
\left\langle\Delta E^{2}\right\rangle=-\frac{\partial\langle E\rangle}{\partial \beta}=k_{B} T^{2} \frac{\partial\langle E\rangle}{\partial T} . \tag{44}
\end{equation*}
$$

D. Wave noise

If we replace the mean energy by the density of state, i.e., $\langle E\rangle=V \rho(\omega, T) d \omega$, with the volume V, then

$$
\begin{equation*}
\left\langle\Delta E^{2}\right\rangle d \omega=-\frac{\partial\langle E\rangle}{\partial \beta} d \omega=-V \frac{\partial\langle\rho\rangle}{\partial \beta} d \omega . \tag{45}
\end{equation*}
$$

By substituting

$$
\rho(\omega, T)=\frac{\hbar \omega^{3}}{\pi^{2} c^{3}} \frac{1}{\exp \left[\hbar \omega / k_{B} T\right]-1},
$$

we have

$$
\begin{equation*}
\left\langle\Delta E^{2}\right\rangle d \omega=V\left[\hbar \omega \rho+\frac{\pi^{2} c^{3}}{\omega^{2}} \rho^{2}\right] d \omega \tag{46}
\end{equation*}
$$

The energy fluctuations can be connected to the photon number fluctuations per mode through

$$
\begin{align*}
\left\langle\Delta E^{2}\right\rangle d \omega & =\text { DOS } \cdot \text { variance of photon number } \cdot \text { energy per mode } \cdot \text { total volume }, \tag{47}\\
& =g(\omega) d \omega \Delta n^{2}(\hbar \omega)^{2} V . \tag{48}
\end{align*}
$$

In comparison, we have

$$
\begin{align*}
\Delta n^{2} & =\frac{\pi^{2} c^{3}}{\hbar \omega^{3}} \rho+\left(\frac{\pi^{2} c^{3}}{\hbar \omega^{3}} \rho\right)^{2} \tag{49}\\
\equiv & =\bar{n}+\bar{n}^{2} \tag{50}
\end{align*}
$$

with the assignment

$$
\begin{equation*}
\bar{n}=\frac{\pi^{2} c^{3}}{\hbar \omega^{3}} \rho \tag{51}
\end{equation*}
$$

The second term in the number fluctuations has its origin from the classical radiation, which is call the wave noises.

