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A. Notations:

• State properties:

1. quantum state: |Ψ〉 =
∑
i αi|ψi〉,

2. completeness:
∑
i |ψi〉〈ψi| = I , or

∫
dx|x〉〈x|.

3. probability interpretation (projection): Ψ(x) = 〈x|Ψ〉,

• Operators:

1. operator: Â|Ψ〉 = |Φ〉,
2. representation: 〈φ|Â|ψ〉,
3. adjoint of Â: 〈φ|Â|ψ〉 = 〈ψ|Â†|φ〉∗,
4. Hermitian operator: Ĥ = Ĥ†, self-adjoint.
5. unitary operator: Û Û† = Û†Û = I .
6. Û can be represented as Û = exp(iĤ) if Ĥ is Hermitian.

7. normal operator: [Â, Â†] = 0, the eigenstates of only a normal operator are orthonormal.
8. hermitian and unitary operators are normal operators.
9. The sum of the diagonal elements 〈φ|Â|ψ〉 is call the trace of Â,

Tr(Â) =
∑
i

〈φi|Â|φi〉. (1)

The value of the trace of an operator is independent of the basis.
10. The eigenvalues of a hermitian operator are real, Ĥ|Ψ〉 = λ|Ψ〉, where λ is real.

• Commutator:

1. If Â and B̂ do not commute then they do not admit a common set of eigenvectors.
2. If Â and B̂ are hermitian operators corresponding to classical dynamical variables a and b, then the

commutator of Â and B̂ is given by

[Â, B̂] ≡ ÂB̂ − B̂Â = i~{a, b}, (2)

where {a, b} is the classical Poisson bracket.

• Measurement:
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1. Each act of measurement of an observable Â of a system in state |Ψ〉 collapses the system to an eigenstate
|ψi〉 of Â with probability |〈φi|Ψ〉|2.

2. The average or the expectation value of Â is given by

〈Â〉 =
∑
i

λi|〈φi|Ψ〉|2 = 〈Ψ|Â|Ψ〉,

where λi is the eigenvalue of Â corresponding to the eigenstate |ψi〉.

I. DENSITY OPERATOR

For the quantum mechanical description, if we know that the system is in state |ψ〉, then an operator Ô has the
expectation value,

〈Ô〉qm = 〈ψ|Ô|ψ〉.

But, typically, we do not know that we are in state |ψ〉, then an ensemble average must be performed,

〈〈Ô〉qm〉ensemble =
∑
n

Pn〈ψn|Ô|ψn〉,

where the Pn is the probability of being in the state |ψn〉 and we introduce a density operator,

ρ̂ =
∑
n

Pn|ψn〉〈ψn|.

The expectation value of any operator Ô is given by,

〈Ô〉qm = Tr[ρ̂ Ô],

where Tr stands for trace.

A. Positive-semi-definite of Density Matrix:

The density operator is strictly non-negative, that is it has only non-negative eigenvalues, because for all |ψ〉,

〈ψ|ρ̂|ψ〉 =
∑
n

Pn|〈ψn|ψn〉|2 ≥ 0.

Or equivalently, for A n × n Hermitian complex matrix M is said to be positive-semi-definite or or non-negative
definite if

~x∗M ~x ≥ 0, for all ~x ∈ Cn,

where ~x∗ is the conjugate transpose of ~x.
Representing ρ̂ in the eigenbasis, the eigenvalues of ρ̂ can be interpreted as probabilities (because they must be

normalized and non-negative) for the eigenstates.

However, for mixed states, there is no unique way of telling whether statistical fluctuations of observed quantities
are caused

• by fluctuations in the state preparation (due to the lack of knowledge), or

• by fluctuations caused by the measurement process (due to the lack of complete control).
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B. Von Neumann entropy:

How can we discriminate pure from mixed states, or more generally, characterize the purity of a state? One option
is the von Neumann entropy, i.e.,

S = −kB tr[ρ̂ ln ρ̂],

where kB denotes the Boltzmann constant.

• S(ρ) is zero if and only if ρ represents a pure state.

• S(ρ) is maximal and equal to lnN for a maximally mixed state, N being the dimension of the Hilbert space.

• S(ρ) is invariant under changes in the basis of ρ, that is, S(ρ) = S(ÛρÛ†), with Û a unitary transformation.

• S(ρ) is additive for independent systems. Given two density matrices ρA, ρB describing independent systems A
and B, we have

S(ρA ⊗ ρB) = S(ρA) + S(ρB).

C. Purity of quantum states:

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a
scalar defined as

γ ≡ tr[ρ̂2],

where ρ̂ is the density matrix of the state. The purity defines a measure on quantum states, giving information on
how much a state is mixed.

• The purity of a normalized quantum state satisfies

1

d
≤ γ ≤ 1,

where d is the dimension of the Hilbert space upon which the state is defined.

• The upper bound is obtained by tr(ρ) = 1 and

tr(ρ̂2) ≤ tr(ρ̂) = 1.

D. Examples:

1. |Ψ〉 = c1|φ1〉+ c2|φ2〉, where 〈φi|φj〉 = δij , orthonormal.

2. 〈Ψ|Ψ〉 = 1, normalization condition: |c1|2 + |c2|2 = 1.

3. Pure states: let |Ψ〉 = 1√
2
|φ1〉+ 1√

2
|φ2〉, then we have

ρ̂1 = |φ1〉〈φ1| =
(

1 0
0 0

)
=

(
0 1
1 0

)(
0 0
0 1

)(
0 1
1 0

)−1

; (3)

ρ̂2 = |φ2〉〈φ2| =
(

0 0
0 1

)
=

(
1 0
0 1

)(
0 0
0 1

)(
1 0
0 1

)−1

; (4)

ρ̂Ψ = |φ1〉〈φ1| =
(

1
2

1
2

1
2

1
2

)
=

(
−1√

2
1√
2

1√
2

1√
2

)(
0 0
0 1

)( −1√
2

1√
2

1√
2

1√
2

)−1

; (5)
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4. Mixed states: let ρ̂mix = 1
2 ρ̂1 + 1

2 ρ̂2, then we have

ρ̂mix =
1

2

(
1 0
0 1

)
=

1

d
Id; (d = 2) (6)

=

(
1 0
0 1

)(
1
2 0
0 1

2

)(
1 0
0 1

)−1

; (7)

5. Purity:

tr(ρ̂2
1) = 1; (8)

tr(ρ̂2
2) = 1; (9)

tr(ρ̂2
Ψ) = 1; (10)

tr(ρ̂2
mix) = 1/2; (11)

(12)

II. POISSON DISTRIBUTION

Coherent state |α〉 has the Poisson distribution in the photon number,

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉. (13)

A. i.i.d. limit:

For photons are independent of each other, the probability of occurrence of n photons, or photoelectrons in a time
interval T is random. Divide the time period T into N intervals, the probability to find one photon per interval is,
p = n̄/N ; while the probability to find no photon per interval is, 1−p. Then we have the probability to find n photons
per interval is,

P (n) =
N !

n!(N − n)!
pn(1− p)N−n, (14)

which is a binomial distribution.
By substituting p = n̄/N , we have

P (n) =
1

n!

N !

(N − n)!Nn
n̄n (1− n̄

N
)N−n. (15)

Stirling’s formula:

ln(N !) = ln 1 + ln 2 + · · ·+ lnN, (16)

≈
∫ N

1

lnx dx, i.e.,
∫

lnx dx = x lnx− x, (17)

= N lnN −N + 1, (18)
≈ N lnN −N. (19)

When the number of photons is large enough, i.e., N →∞, one has

lim
N→∞

ln(
N !

(N − n)!Nn
) = N lnN −N −N ln(N − n) + n ln(N − n) +N − n− n lnN, (20)

= 0, note: N � n, (21)

or

lim
N→∞

(
N !

(N − n)!Nn
) = 1. (22)
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In the same way,

(1− n̄

N
)N−n = 1− (N − n)

n̄

N
+

1

2!
(N − n)(N − n− 1)(

n̄

N
)2 + . . . , (23)

≈ 1− n̄

1!
+
n̄2

2!
− . . . , (24)

= e−n̄. (25)

In the limit, N →∞, the probability for photon number becomes

P (n) =
n̄nexp(−n̄)

n!
, (26)

=
|α|2nexp(−|α|2)

n!
, (27)

where n̄ ≡ |α|2. This is the Poisson distribution and the characteristics of coherent light. Note that
∞∑
n=0

P (n) = 1. (28)

B. Mean and Variance

The probability of finding the photon number n in the Poisson distribution is

P (n) ≡ |〈n|α〉|2 =
e−|α|

2 |α|2n

n!
, (29)

for which the mean and variance of photon number are,

〈n̂〉 =
∑
n

nP (n) = |α|2 ≡ n̄, (30)

〈∆n̂2〉 = 〈n̂2〉 − 〈n̂〉2 = |α|2 = 〈n̂〉. (31)

III. THERMAL STATES

By applying density matrix for the mixed states, we define the thermal states as

ρth =
∑
n

P (n) |n〉〈n|, (32)

with P (n) =
1

n̄+ 1
(

n̄

n̄+ 1
)n, n̄ =

1

exp[~ω/kBT ]− 1
. (33)

A. Boltzmann’s law

In the quantized EM fields, the eigen-energies of photons are discrete,

En = ~ω(n+
1

2
).

Accordingly to the Boltzmann’s law, the probability to find a state with the energy En is proportional to

P (n) ∝ exp[−En/kBT ],

where T denotes the temperature, and kB is the Boltzmann’s constant. Then, to find n photons in the mode with
the energy En is

P (n) =
exp[−En/kBT ]∑∞
n=0 exp[−En/kBT ]

, (34)

= exp[−En/kBT ] (1− exp[−~ω/kBT ]); En = n ~ω (35)
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The mean photon number following Boltzmann’s law is

n̄ =

∞∑
n=0

nP (n) =
1

exp[~ω/kBT ]− 1
, (36)

which gives the Planck formula. In terms of the mean photon number n̄, the probability to find n photons is

P (n) =
1

n̄+ 1
(

n̄

n̄+ 1
)n, (37)

which is called the Bose-Einstein distribution, and used as the distribution function for the thermal light source from
the black-body radiations.

The variance of the Bose-Einstein distribution is

∆n2 = n̄+ n̄2, (38)

which is larger than that of a Poisson distribution.

B. Thermal light

The electromagnetic radiation emitted by a hot body is generally called thermal light, or black-body radiance. The
energy density within the angular frequency range ω to ω + dω is given by the Planck’s law:

ρ(ω, T ) = DOS ·mean number of photons · energy per photon dω, (39)

=
~ω2

π2 c3
~ωn̄ dω, (40)

=
~ω3

π2 c3
1

exp[~ω/kBT ]− 1
dω. (41)

C. Statistics

Follow the Boltzmann’s law, the expectation value the energy is given by

〈E〉 =
∑
n

En P (En) =

∑
nEnexp[−En/kBT ]∑
n exp[−En/kBT ]

. (42)

Here the energy is quantized, En = n~ω. We can define the variable

β ≡ 1

kBT
,

and take the partial derivative of the mean energy with respect to β, that is,

∂〈E〉
∂β

= −〈E2〉+ 〈E〉2. (43)

Then, we can find the variance of energy

〈∆E2〉 = −∂〈E〉
∂β

= kBT
2 ∂〈E〉
∂T

. (44)

D. Wave noise

If we replace the mean energy by the density of state, i.e., 〈E〉 = V ρ(ω, T ) dω, with the volume V , then

〈∆E2〉 dω = −∂〈E〉
∂β

dω = −V ∂〈ρ〉
∂β

dω. (45)
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By substituting

ρ(ω, T ) =
~ω3

π2 c3
1

exp[~ω/kBT ]− 1
,

we have

〈∆E2〉 dω = V [~ωρ+
π2c3

ω2
ρ2] dω. (46)

The energy fluctuations can be connected to the photon number fluctuations per mode through

〈∆E2〉 dω = DOS · variance of photon number · energy per mode · total volume, (47)
= g(ω) dω∆n2(~ω)2 V. (48)

In comparison, we have

∆n2 =
π2c3

~ω3
ρ+ (

π2c3

~ω3
ρ)2, (49)

≡ = n̄+ n̄2, (50)

with the assignment

n̄ =
π2c3

~ω3
ρ. (51)

The second term in the number fluctuations has its origin from the classical radiation, which is call the wave noises.


