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A. Notations:

e State properties:

1. quantum state: |¥) = > a;|1;),
2. completeness: Y. |v;)(¢;] = I, or [ dx|x)(z|.
3. probability interpretation (projection): ¥(z) = (z|¥),

e Operators:

1. operator: A|U) = |®),

2. representation: (¢|A[1)),

3. adjoint of A: (¢|A[p) = (| Af[g)",

4. Hermitian operator: H = HT, self-adjoint.

5. unitary operator: UUt =00 =1.

6. U can be represented as U = exp(iH) if H is Hermitian.

7. normal operator: [A, AT] = 0, the eigenstates of only a normal operator are orthonormal.
8. hermitian and unitary operators are normal operators.

9. The sum of the diagonal elements (¢|A|t) is call the trace of A,

Tr(/l) = Z<¢Z|A‘¢’L> (1)
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The value of the trace of an operator is independent of the basis.

10. The eigenvalues of a hermitian operator are real, H|¥) = A|¥), where X is real.
e Commutator:

1. If A and B do not commute then they do not admit a common set of eigenvectors.

2. 1f A and B are_hermitian operators corresponding to classical dynamical variables a and b, then the
commutator of A and B is given by

[A, Bl = AB — BA = ih{a, b}, (2)
where {a, b} is the classical Poisson bracket.

o Measurement:
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1. Each act of measurement of an observable A of a system in state |¥) collapses the system to an eigenstate
|v;) of A with probability |(¢;|¥)|?.

2. The average or the expectation value of Ais given by

(A) =D Ail(a)* = (W] A]w),
where ); is the eigenvalue of A corresponding to the eigenstate [1):).

I. DENSITY OPERATOR

For the quantum mechanical description, if we know that the system is in state |¢), then an operator O has the
expectation value,

(O)am = (¥|019).

But, typically, we do not know that we are in state |1}, then an ensemble average must be performed,

<<O>qm>ells9111ble = Z Pﬂ<wn‘é|wn>7

where the P, is the probability of being in the state |1,,) and we introduce a density operator,

p =" Pultbn)(tul-

The expectation value of any operator O is given by,
(O)m = Tr[p O,

where T'r stands for trace.

A. Positive-semi-definite of Density Matrix:

The density operator is strictly non-negative, that is it has only non-negative eigenvalues, because for all |¢),
n
Or equivalently, for A n x n Hermitian complex matrix M is said to be positive-semi-definite or or non-negative
definite if
*MZ >0, forall e C",

where 7* is the conjugate transpose of .
Representing p in the eigenbasis, the eigenvalues of p can be interpreted as probabilities (because they must be
normalized and non-negative) for the eigenstates.

However, for mixed states, there is no unique way of telling whether statistical fluctuations of observed quantities
are caused

e by fluctuations in the state preparation (due to the lack of knowledge), or

e by fluctuations caused by the measurement process (due to the lack of complete control).



B. Von Neumann entropy:

How can we discriminate pure from mixed states, or more generally, characterize the purity of a state? One option
is the von Neumann entropy, i.e.,

S = —kptr[p Inp|,
where kp denotes the Boltzmann constant.
p) is zero if and only if p represents a pure state.
p) is maximal and equal to In IV for a maximally mixed state, N being the dimension of the Hilbert space.

[ ]
[ ]
. is invariant under changes in the basis of p, that is, S(p) = S(UpU1), with U a unitary transformation.
[ ]
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p) is additive for independent systems. Given two density matrices p4, pp describing independent systems A
and B, we have

(
(
(p
)

S(pa®pp) = S(pa) + S(pp).

C. Purity of quantum states:

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a
scalar defined as

where p is the density matrix of the state. The purity defines a measure on quantum states, giving information on
how much a state is mixed.

e The purity of a normalized quantum state satisfies

<~y <1,

Ul =~

where d is the dimension of the Hilbert space upon which the state is defined.

e The upper bound is obtained by tr(p) = 1 and

tr(p?) < tr(p) = L.

D. Examples:

1. |U) = c1]¢1) + c2|p2), where (¢;|¢;) = 0;;, orthonormal.

2. (¥|¥) = 1, normalization condition: |c;|? + |ca]? = 1.
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3. Pure states: let |¥) = L |¢1) + %W)Z% then we have
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4. Mixed states: let piiz = %,61 + %ﬁg, then we have

. 1710 1=

d
10\/%0
01)\0 3

5. Purity:
tr(p7) = 1;
tr(p) = 1;
tr(pg) = 1;
tr(prin) = 1/2;

II. POISSON DISTRIBUTION

Coherent state |a) has the Poisson distribution in the photon number,

= ¢ 3l Z \/>|n

A. ii.d. limit:

(13)

For photons are independent of each other, the probability of occurrence of n photons, or photoelectrons in a time
interval T is random. Divide the time period T into N intervals, the probability to find one photon per interval is,
p = i/ N; while the probability to find no photon per interval is, 1 —p. Then we have the probability to find n photons

per interval is,

N!
P _ () 1— N—n
(n) Hﬁjaw( p)~"
which is a binomial distribution.
By substituting p = /N, we have
1 N! n
P _ = n _ "\N—-n
)= v -y

Stirling’s formula:

In(N!) = Inl14+mn2+---+InN,

N
/ Inzdx, i.e., /lnxdx:xlnxfx,
1

= NInN - N +1,
NInN — N.

Q
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When the number of photons is large enough, i.e., N — oo, one has

N!
]\}gnooln(m) = NInN—-N-NIn(N-n)+nln(N —n)+ N—-n—nlnN,
= 0, note: N > n,
or
N!

lim ( =1.

(14)



In the same way,

B S EUSNLUNE F v VLAY

(1 N) = 1—(N n)N+ 2!(N n)(N —n 1)(N) +..., (23)

= =2

non
Nl g (24)
= e (25)

In the limit, N — oo, the probability for photon number becomes
P(n) = %@7 (26)
n!

_ laPexp(-|a?) o)

n!

where 71 = |a|?. This is the Poisson distribution and the characteristics of coherent light. Note that

> Pn)=1. (28)

B. Mean and Variance

The probability of finding the photon number n in the Poisson distribution is

5 ef|a\2|a‘2n

P(n) = |(n|a)] "

for which the mean and variance of photon number are,
(i) = > nP(n) = o] =n, (30)
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III. THERMAL STATES

By applying density matrix for the mixed states, we define the thermal states as
pin =Y P(n) |n)(nl, (32)

1
n-+

1
exp[fw/kpT] — 1

3

with  P(n) =

)nvﬁ:

1( 1

n

+

A. Boltzmann’s law

In the quantized EM fields, the eigen-energies of photons are discrete,
1
Accordingly to the Boltzmann’s law, the probability to find a state with the energy F,, is proportional to

P(n) «< exp[—FE,/kpsT],

where T denotes the temperature, and kp is the Boltzmann’s constant. Then, to find n photons in the mode with
the energy E,, is
exp[—Ey /kpT]
P(n) = —~ , 34
D SN oy
— exp[—En/ksT) (1 — expl—heo/ksT));  En=nhw (35)




The mean photon number following Boltzmann’s law is

= 1
= Z:O"P(”) = explhw/kpT] — 1’ (36)

which gives the Planck formula. In terms of the mean photon number 7, the probability to find n photons is

1 n
n+1l n+1

P(n) =

)", (37)
which is called the Bose-Finstein distribution, and used as the distribution function for the thermal light source from

the black-body radiations.
The variance of the Bose-Einstein distribution is

An? = a4 a?, (38)

which is larger than that of a Poisson distribution.

B. Thermal light

The electromagnetic radiation emitted by a hot body is generally called thermal light, or black-body radiance. The
energy density within the angular frequency range w to w + dw is given by the Planck’s law:

p(w, T) = DOS - mean number of photons - energy per photon dw, (39)
hw?
huw? 1
= dw. (41)

72 ¢ explhw/kpT] — 1

C. Statistics

Follow the Boltzmann’s law, the expectation value the energy is given by

_ > Enexp|—E, /kpT]

E) = E, P(E 42
(E) = O B P = S BT e
Here the energy is quantized, F,, = nhw. We can define the variable
1
ﬁ - kBT7
and take the partial derivative of the mean energy with respect to §, that is,
O(E) 2 2
—=—(F E)=. 43
o5 = () + (B) (1)
Then, we can find the variance of energy
O(E) O(E)
AE?) = — = kpT? . 44
N (44
D. Wave noise
If we replace the mean energy by the density of state, i.e., (F) = Vp(w,T) dw, with the volume V, then
O(E) 9p)
AE?) dw = ———t dw = -V " dw. 45
( ) dw 5 w 1% 95 W (45)



By substituting

w3 1
T =
pl.T) 72 3 expliw/kpT] — 1’
we have
2 w2t
(AE?) dw =V [lwp + R4 ] dw.

The energy fluctuations can be connected to the photon number fluctuations per mode through

(AE?)dw = DOS - variance of photon number - energy per mode - total volume,
= g(w) dwAn?(hw)* V.

In comparison, we have

2.3 2.3
T=C T=C
At = poget el
= = a+n?
with the assignment
7'('203
n= has P

(51)

The second term in the number fluctuations has its origin from the classical radiation, which is call the wave noises.



